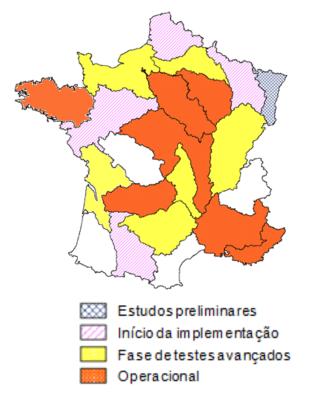
Como falhas de previsões podem ser usadas para melhorar os modelos hidrológicos?

Caso dos eventos de cheia de 2013 na França.

Carina Furusho, Quentin Stomp, Charles Perrin, Maria-Helena Ramos

- Foco em casos mal-sucedidos (raramente publicados)
- Identificar oportunidades de evolução do modelo (operacional e cientifico)
- Ilustrar com um caso de aplicação



17 e 18 de setembro de 2014 Hotel Maksoud Plaza GRP: vocação operacional e de

pesquisa

Usuários operacionais

Pesquisa no Irstea

Utilização de GRP pelos Serviços de Previsão de Enchentes (SPC) na França.

16, 17 e 18 de setembro de 2014 Hotel Maksoud Plaza São Paulo – SP

Retornos (feedbacks) negativos

Reavaliar:

_

1. Dados – chuva/vazão

Sistemático

Pontuais

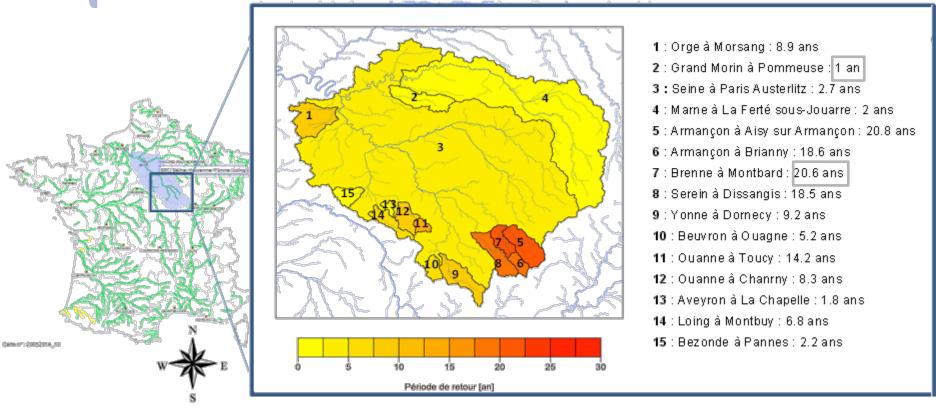
viés

variação espacial, extrapolação de curvas-chave

2. Calibragem

3. Estrutura do modelo

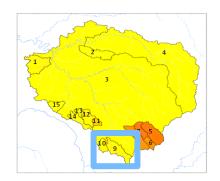
As cheias de 2013 na França

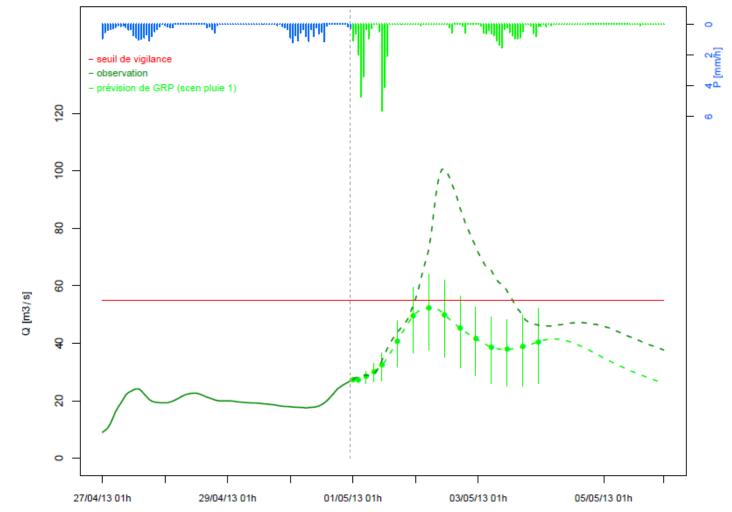

irstea

www.irstea.fr

Sena, 02/2013

Períodos de recorrência

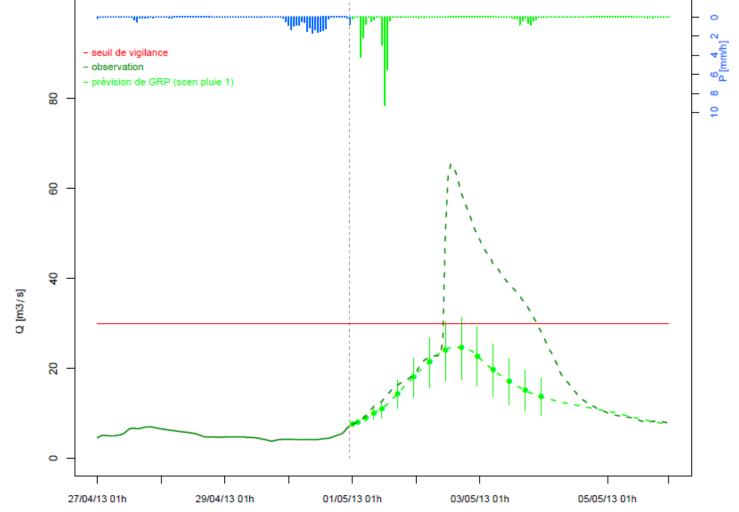




16, 17 e 18 de setembro de 2014 Hotel Maksoud Plaza São Paulo – SP Período mediano nas 15 bacias: 9 anos Gumbel com vazões máximas anuais 1960-2013 (base HYDRO)

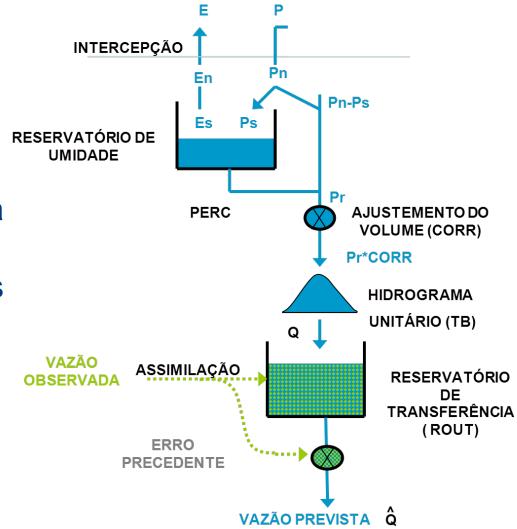
Yonne, 01/05/2013

Yonne à Dornecy H2051010 (Superficie de 781.0 km²)



Ouanne, 01/05/2013

Ouanne à Charny H3122010 (Superficie de 562.0 km²)



Estrutura do modelo GRP

 Modelo global, conceitual e continuo

escala de tempo horária

3 parâmetros calibrados

Função objetivo

Erro quadrático

RMSE = $\sqrt{1}$ /n Σ i=1 \hat{l} n $(Q \downarrow i + H \hat{l}$ obs $-Q \downarrow i$

Erro absoluto

EARM = $\Sigma_{i=1} \ln \frac{1}{n} \frac{1}{n} \frac{1}{n} \ln \frac$

KGE (Kling & Gupta)

$$KGE = 1 - ED$$

ED =
$$\sqrt{(r-1)}$$
/2 + $(\alpha-1)$ /2 + $(\beta-1)$ /2 $\alpha = \sigma sim/\sigma obs$

$$\beta = (\mu obs - \mu sim)^2/\sigma obs^2$$

$$\mu_{obs} \text{ et } \mu_{sim}, \text{ médias das vazões}$$

$$r, \text{ coefficiente de correlação}$$

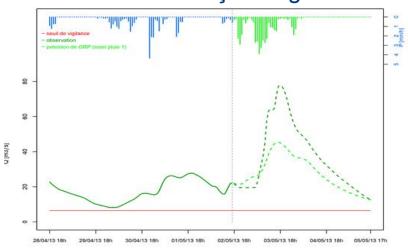
$$r = 1 / n \sum_{i} f (Q \downarrow i f obs - \mu obs) (Q \downarrow i f sim - \mu sim)/\sigma obs.\sigma sim$$

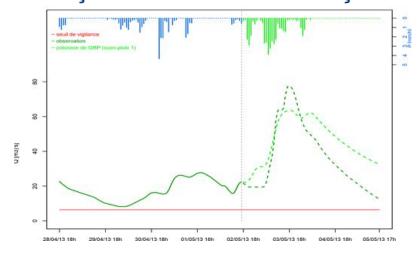
Seleção de registros para calibração

- Período inteiro
- Vazões acima de um nível
- Vazões em aumento

Evitar perturbações de barragens que regulam as vazões de estiagem Enfatizar as vazões mais fortes

Bezonde à Pannes H3322010 (Superficie de 339.0 km²)



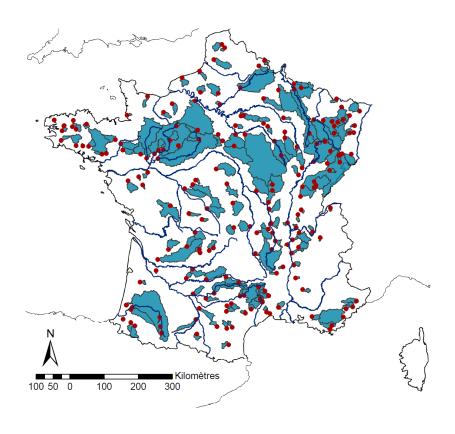


Armançon à Briany, 01/05/2013

Calibração original

Calibração em vazões em elevação

Performance geral não degradada



16, 17 e 18 de setembro de 2014 Hotel Maksoud Plaza São Paulo – SP

Estratégia	RMSE periodo completo	RMSE elevação	EARM periodo completo	EARM elevação	KGE periodo completo	KGE elevação
Eficiência (C2MP)	0.36	0.39	0.32	0.37	0,30	0,32
CSI	42.82	43.44	32.65	38.47	35,4	41,81

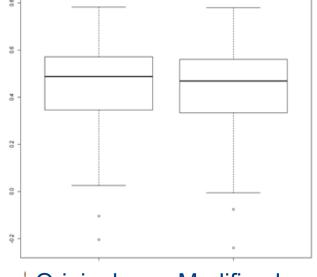
Verificação em uma amostra de 200 bacias

Verificações:

Melhora de previsão de eventos importantes

Não degradação da eficiência global

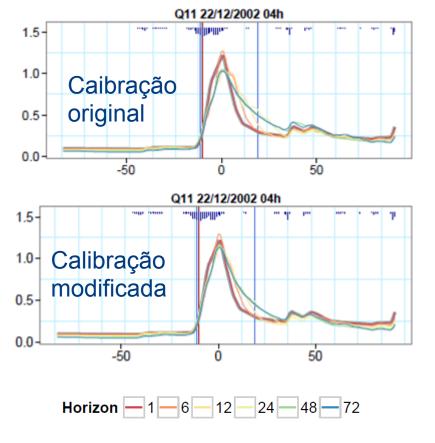
Variação dos parâmetros



16, 17 e 18 de setembro de 2014 Hotel Maksoud Plaza

Verificação em uma amostra de 200 bacias

Eficiência

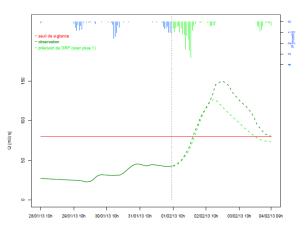


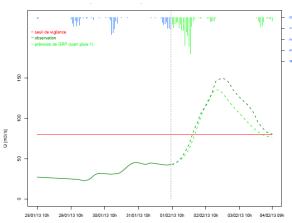
Original Modificada Calibração

L'Elorm à Commana, 9km²

- Identificação de questões científicas potenciais sobre:
 - A extrapolação de dados de vazão e o impacto da distribuição espacial das chuvas em certos eventos
 - A estrutura do modelo para bacias de comportamento peculiar A estratégia de calagem
- Resposta operacional satisfatória:
 - A estratégia de calagem revisada permite ao modelo de reduzir o erro de maneira significativa no evento particularmente importante de maio 2013 nas bacias de estudo, sem perder a eficiência geral.

Muito obrigada

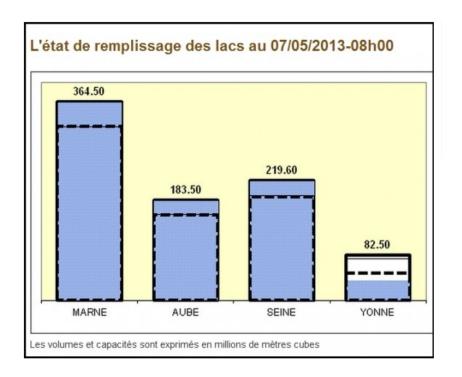

webgr.irstea.fr carina.furusho@irstea.fr



Sem vazão minima

Vazão minima: 80 m³/s

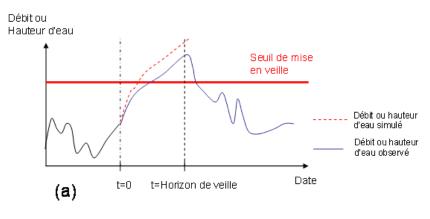
Vazão minima: 100 m³/s

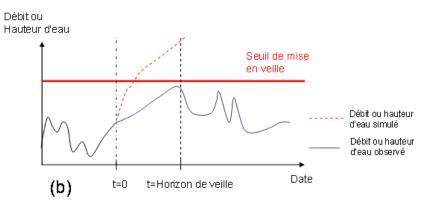


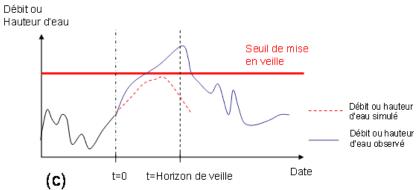
Determinação de um nível otimo para cada bacia

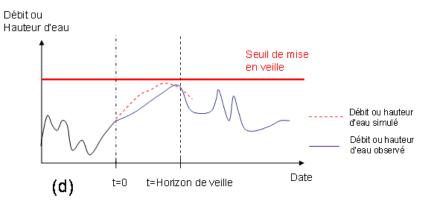
Cheias de maio 2013

 Pluviometria 70% superior ao normal (1981-2013)


(bulletin climatique de mai 2013, CMIR-Paris)


- Solos saturados
- Grandes lagos a 90% da capacidade





16, 17 e 18 de setembro de 2014 Hotel Maksoud Plaza São Paulo – SP

Observação

		Limite ultrapassado	Abaixo do limite
Prévision	Limite ultrapassado	(a) Alerta correto	(b) Alerta falso
	Abaixo do limite	(c) Alerta perdido	(d)

$$CSI = \frac{a}{a+b+c}$$

$$POD = \frac{a}{a+c}$$

$$FAR = \frac{b}{a+b}$$

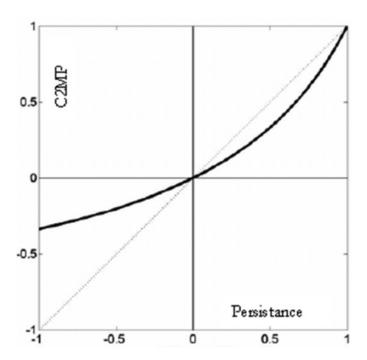
0

Le calage du modèle – Critères

Persistance

Comparaison du modèle au modèle naïf

$$Eff = 1 - \frac{\sum_{i=1}^{n} (Q_{obs}(i+L) - Q_{prev}(i+L))^{2}}{\sum_{i=1}^{n} (Q_{obs}(i+L) - Q_{obs}(i))^{2}}$$


C2MP (borné [-1;1])

Permet d'établir des moyennes de performance sur un ensemble de Bassin

$$C2MP = \frac{Eff}{2 - Eff}$$

Variação dos parâmetros

1 : Yonne à Dornecy

2: Beuvron à Ouagne

3 Serein à Dissangis

4 : Armançon à Brianny

5: Brenne à Montbard

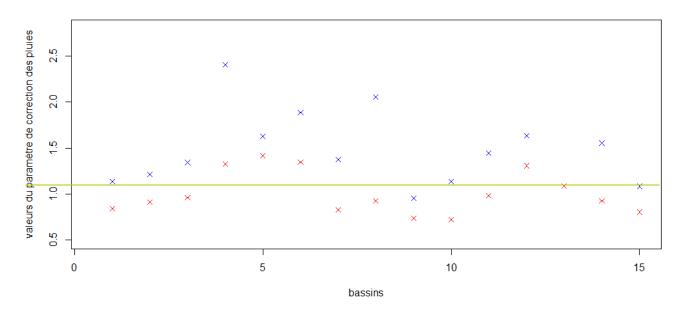
6 : Armançon à Aisy sur Armançon

7: Loing à Montbouy

8 : Aveyron à La Chapelle

9 : Ouanne à Toucy

10 : Ouanne à Chanrny


11: Bezonde à Pannes

12: Orge à Morsang

13: Marne à La Ferté sous Jouarre

14: Grand Morin à la Pommeuse

15: Seine à Paris Austerlitz

Calibragem no periodo completo

Calibragem somente vazões em aumento

Para 60% das bacias: CORR < 1 → CORR > 1