

Capacidade de carga e o uso múltiplo da água de reservatórios— Eutrofização versus Re-Oligotrofização

Dr. Günter Gunkel, Universidade Técnica do Berlim

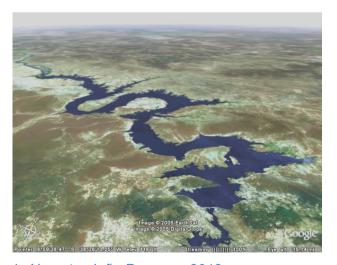
Parte do projeto "INNOVATE"

INterplay between the multiple use of water reservoirs via inNOvative coupling of substance cycles in Aquatic and Terrestrial Ecosystems

INterplay between the multiple use of water reservoirs via inNOVative coupling of substance cycles in Aquatic and Terrestrial Ecosystems

FINANCIAMENTO DO PROJETO (2012 – 2016)

Alemanha - € 4.715.000 - Ministério Federal de Educação e Pesquisa da Alemanha – BMBF Brasil - € 3.322.196 - MCT - Ministério da Ciência e Tecnologia UFPE, UFRPE, APAC, INSA, ITEP, IPA, IFPE , FACEPE, CNPq, CAPES


Alemanha:

Universidade Técnica de Berlin, (TUB), Universidade de Hohenheim, Instituto de Ecologia dos Corpos d'Água e Pesca (IGB Berlin), Instituto Potsdam de Efectos de Mudanza da Clima (PIK Potsdam) Brasil:

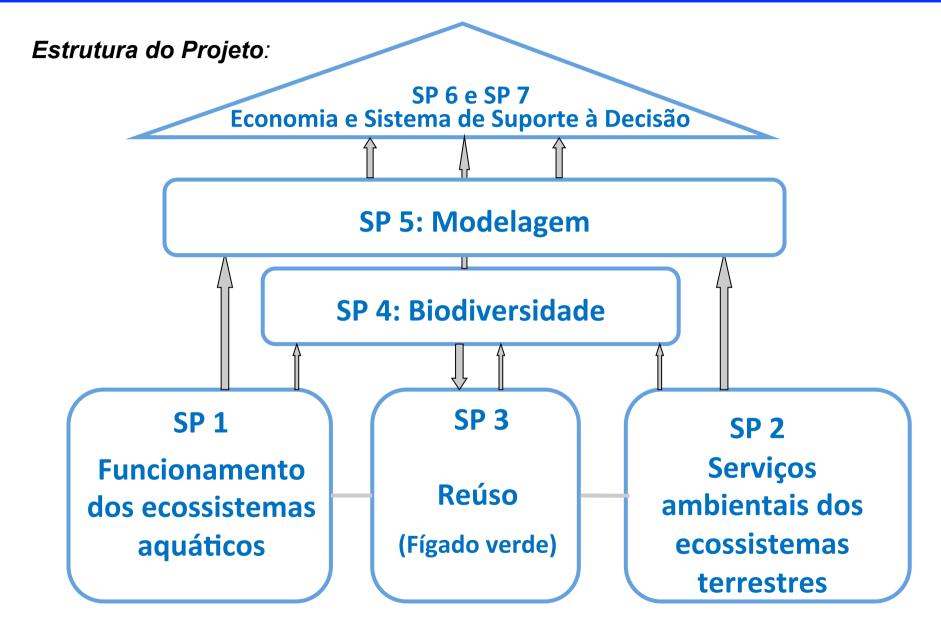
MCT, UFPE, UFRPE, IFPE, SRH, APAC, INSA, EMBRAPA SOLOS, CODEVASF, ITEP, CNPq, FACEPE, PRODEMA (UFPE, UFPB, UFRN, UFPI, UFC, FUFSE, UESC), Prefeitura de Itacuruba

ZONA DE ESTUDIOS

Reservatório de Itaparica (São Francisco) y o sub-bacia do reservatório.

Reservatórios em áreas tropicais e semiáridas implicam numerosos problemas,

- Uma alteração célere do ecossistema aquático alcançando condições eutróficas,
- Eflorescências de algas, através de cianobactérias (com produção de cianotoxinas),
- Desenvolvimento de grandes proporções de macrófitas (Egeria densa),
- Emissão de metano com condiciones eutróficas no reservatorio,
- Invasão de novos espécies, também espécies não desejada (Egeria densa; Biomphalaris stramineae (+ Schistosoma mansoni) causador da esquitonomose).


A sustentabilidade de um reservatório e garantida unicamente com o nível trófico reduzido, com um processo de a re-oligotrofização,

= um processo de múltiplos fatores, como

- Estratégias de saneamento na bacia hidrográfica (tratamento de esgotes, redução da erosão, tratamento da água de drenagem, ...),
- Restauração (in situ), como faixas de vegetação ao ribeirões e as margens do reservatório,
 retirar de sedimentos orgânicos (re-uso dos sedimentos no agricultura),
- Condições operacionais da força hidroelétrica (decréscimo do nível de água periodicamente),
- Uso adaptado do corpo de água (através da aquicultura).

Pesquisas do projeto INNOVATE no sistema aquático – Reservatório Itaparica:

- Analisar o capacidade do re-oligotroficação do reservatório,
- Analisar os emissões dos gases do efeito estufa (metano),
- Analisar mobilização do fósforo nos sedimentos e qualidade da água,
- Conexão nos ecossistemas aquáticos e terrestre (com re-uso do sedimentos, reuso do água),
- Adaptação da aquicultura por sistemas com menor contaminação (fídalgo verde),
- Biomonitoramento dos efeitos das substâncias tóxicas na água e nos peixes (cianotoxinas),
- Biodiversidade aquática e a ocorrência de espécies não desejadas (Egeria densa, cianobacterias, ...),
- Modelagem multidimensional de alta resolução no reservatório para avaliação da qualidade da água (mistura da água do reservatório com na água dos fiordes).

Uso (serviço) do ecossistema	Qualidade do reservatório		
Água potável	oligotrófico		
Água por animais		mesotrófico	
Água por irrigação		mesotrófico	
Água por aquicultura	oligotrófico		
Pesca desportivo, pesco natural		mesotrófico	
Produção da energia elétrica		mesotrófico	
Uso dos sedimentos (melhora solos)			eutrófico
Recreação		mesotrófico	
Biodiversidade		mesotrófico	

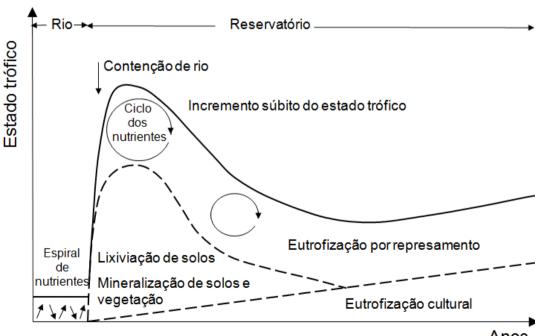
Hoje a política ambiental prioriza os usos múltiplos do reservatório, e existe normas diferente para qualidade do água, mas o reservatório deve esta no estado oligo- até mesotrófico.

Uso por hidroenergia exigi um estado mesotrófico (impactos dos macrofitas, precipitações de ferro)

Dados básicos do Reservatório Itaparica.

Comprimento	148 km
Área superficial	828 km ²
Área da bacia do São Francisco	630.000 km ²
Subárea de captação do reservatório	93.040 km ²
Vazão regularizada	$2.060 \text{ m}^3/\text{s}$
Profundidade média	13 m
Profundidade máxima	101 m
Flutuação do nível em operação	299 - 304 m
Volume máximo	10,78 km ³
Tempo de residência médio	63 d

Conductividade (µS cm ⁻¹)	78
pH	7,3
Cloreto (mg L ⁻¹)	16,6
O ₂ (mg L ⁻¹)	7,3
N-total (µg L ⁻¹)	244
NH ₃ -N (μg L ⁻¹)	0
NO ₃ -N (μg L ⁻¹)	9,2
P-total (µg L ⁻¹)	19,6
P reactivo (µg L ⁻¹)	2,4


XI Simpósio de Recursos Hídricos do Noreste, João Pessoas

O processo de eutrofização do reservatório:

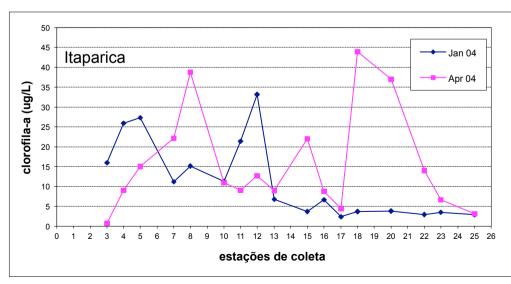
- = um processo 'natural', o 'trophic upsurge', incremento súbito do estado trófico
- a mineralização da vegetação inundada e de terras,
- 2. alterações das condições hidrodinâmicas, aumento do caráter do potamom (aumento da temperatura, redução do re-arejamento físico, e o depósito de matéria suspendida),
- 3. acumulação de sedimentos finos com material orgânico, → um déficit de oxigênio, com remobilização química redox de fósforo,
- uso de terras em bacias

 hidrográficas devido à migração
 populacional para as margens
 do reservatório onde as
 possibilidades econômicas são
 mais favoráveis.

Eutrofização com biomassa alta dos macrofitas submersa (Egeria densa):

= planta de espécies não desejada (equitonomose, impactos nos turbinas).

XI Simpósio de Recursos Hídricos do Noreste, João Pessoas, 2012

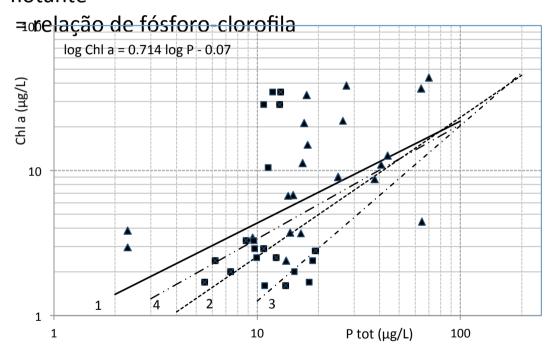


Eutrofização com biomassa alta dos algas flotante:

Clorofila a: média = 10,9 μ g L⁻¹, máximo 44,0 μ g L⁻¹ (2004/2005) Clorofila a: média = 2,7 μ g L⁻¹, máximo 15,4 μ g L⁻¹ (2007 – 2010)

Ocorrência de algas dominante (2004/2005):

Ooystis sp.	(Chlorophyta)	
Cylindrospermopsis raciborskii	(Cyanophyta)	= produtor de cianotoxinas
Phormidium sp.	(Cyanophyta)	= produtor de cianotoxinas
Microcystis aeruginosa	(Cyanophyta)	= produtor de cianotoxinas
Oscillatoria splendida	(Cyanophyta)	= produtor de cianotoxinas
Aulacoseira granulata	(Bacillariophyceae)	
Anabaena cf spiroides	(Cyanophyta)	= produtor de cianotoxinas
Aphanocapsa delicatissima	(Cyanophyta)	= produtor de cianotoxinas



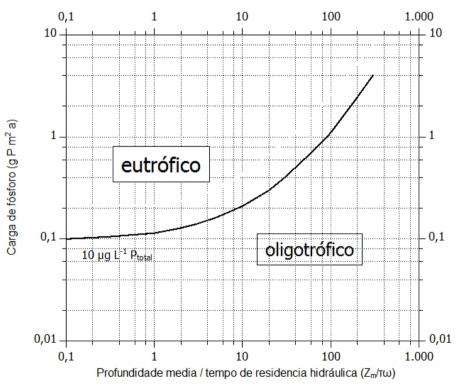
Existem zonas locais e temporais com concentrações alto de clorofila.

Apreciação do processo de eutrofização:

1. Determinação na **eficiência do uso de fósforo** de algas flotante

- 1 = este estudo (CHESF 2004/2005)
- 2 = OECD (1982)
- 3 = CEPIS por Salas & Martino (1991)
- 4 = Huszar et al. (2006)
- período de chuva
- ▲ peridodo de seca

 P_{total} de 10 µg L⁻¹ represente uma biomassa de fitoplâncton de < 5 µg L⁻¹ Chl a, o que significa condições mesotróficas pelo sistema de classificação de OECD.


Apreciação do processo de eutrofização:

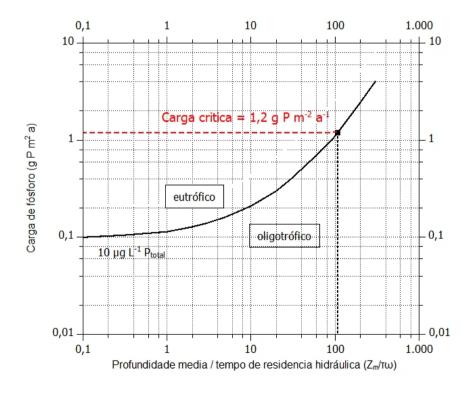
2. Determinação da carga crítica (L_{crit}) pelo modelo Vollenweider (OECD 1982)

=
$$L_{\mathrm{crit}} = P_{\mathrm{crit}} \; q_{\mathrm{s}} \left(1 + \frac{\sqrt{z_{\mathrm{m}}}}{q_{\mathrm{s}}} \right) \left[\mathrm{g} \; \mathrm{m}^{\text{-2}} \; \mathrm{a}^{\text{-1}} \right]$$

 q_s = carga hidráulica (= Q/A = z_m/τ_w ; Q = descarga anual [m³ a¹¹], A = superfície do lago [km²], z_m = profundidade média [m] e τ_w = tempo de residência da água [a]).

Utilizamos a concentração critica do fósforo de 10 $\mu g \; L^{-1}$

Apreciação do processo de eutrofização:


3. Calculação da carga crítica pelo modelo Vollenweider

L_{crit} de Itaparica é 1.2 g P m⁻² a⁻¹ (com 10 μg l⁻¹ como concentração crítica)

L crit estão fontes de fósforo para o reservatório Itaparica

- (a) afluxo do São Francisco
- (b) fontes internas
- (c) fontes externas (da sub bacia)
- 4. Calcularão da taxa de **exportação crítica**

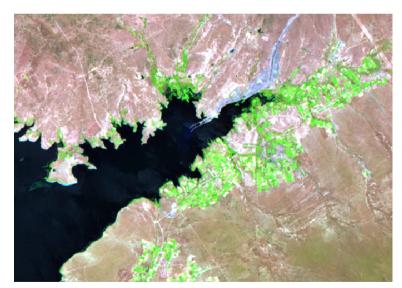
$$EX_{crit} < L_{crit} - L_{afluxo} - L_{interna}$$

Para o reservatório Itaparica a entrada principal de P tem fontes internas

– Afluxo do São Francisco (2.154 m³ sec⁻¹), concentração média de P = 19,6 μg I^{-1} , concentração máxima = 77 μg I^{-1} (período de chuva),

Carga interna

- pela mineralização da vegetação remanescente de aproximadamente
 7,4 t ha⁻¹ com a perda de P de aproximadamente 40 kg km⁻¹ durante um período de 20 anos.
- Viveiros de piscicultura de tilápia, produção de peixe é ~ 4.000 t a⁻¹, com um lançamento de 52 t a⁻¹, (fator de conversão alimentar de 1,3, P conteúdo alimentar de 0,6 %, P lançamento no reservatório de 80 %),
 - produção planejado de 20.000 t a⁻¹, lançamento de 260 t a⁻¹ P a,
- Carga interna de P devido ao lançamento redox químico de P, não há dados disponíveis,
- Chuvas de aproximadamente 1 kg km⁻² a⁻¹.



As fontes externas de P são

- exportações da agricultura irrigada (escoamento superficial, drenagem, erosão), 4.700 ha com o lançamento de P de aprox. 100 kg km⁻² a⁻¹, este valor corresponde com bacias hidrográficas brasileiras;
- exportações da caatinga (93.040 km²) com aproximadamente 1 30 kg km⁻¹ a⁻¹;
- esgoto produzido por aprox. 50.000 habitantes que vivem nas margens do reservatório, tratamento insuficiente de esgoto (tanques facultativos), emissão de 50 % do equivalente de habitante de aprox. 3 g d⁻¹ P.

Agricultura irrigada

Erosão no caatinga

Carga da fósforo de fontes internas (g m⁻² a⁻¹) e em % da carga critica

Fonte P	Carga-P g m ⁻² a ⁻¹	% da P _{crit} carga
Afluxo São Francisco	0,14	11,6
Fontes internas:		
Mineralização da vegetação e de terras inundadas	0,20	16,7
Lançamento de P redox químico de sedimentos	?	?
Aquicultura atual Aquicultura planeda	0,06 0,32	5,0 26,7
Deposição atmosférica	0,001	0,08
Subsoma com aquicultura extensiva	0,40	33,3
Subsoma com aquicultura intensiva	0,66	55,0

Carga da fósforo de fontes internas (g m⁻² a⁻¹) e % da carga critica

Fonte P	Carga-P g m ⁻² a ⁻¹	% da P _{crit} carga	Potencial para regulação da entrada de P
Afluxo São Francisco	0,14	11,6	Gestão da bacia do reservatório Sobredinho – plano de reduzir a liberação de nutrientes, erosão no caatinga
Fontes internas:			Limpeza poderia ter acontecido antes da
Mineralização da vegetação e de terras inundadas	0,20	16,7	contenção, não há mais possibilidades
Lançamento de P redox químico de sedimentos	?	?	Oligotrofização, fixando sedimentos óxicos
Aquicultura atual Aquicultura planeda	0,06 0,32	5,0 26,7	Desenvolvimento de sistemas de aquiculturas sustentáveis (p.ex. reutilização da água do esgoto)
Deposição atmosférica	0,001	0,08	Entrada fixada
Subsoma com aquicultura extensiva	0,40	33,3	
Subsoma com aquicultura intensiva	0,66	55,0	

Carga da fósforo de fontes externa (g m⁻² a⁻¹) e % da carga critica

Fonte P	Carga-P g m ⁻² a ⁻¹	% da P _{crit} carga
Fontes externas: Agricultura irrigada	0,01	0,8
Sub-bacia (caatinga)	1,12	93,3
Comunidades rurais	0,03	2,5
Subsoma	1,16	96,6

Carga da fósforo de fontes externas (g m⁻² a⁻¹) e % da carga critica

Fonte P	Carga-P g m ⁻² a ⁻¹	% da P _{crit} carga	Potencial para regulação da entrada de P
Fontes externas: Agricultura irrigada	0,01	0,8	Agricultura adaptada com irrigação por gotejamento
Sub-bacia (caatinga)	1,12	93,3	Entrada fixada
Comunidades rurais	0,03	2,5	Tratamento avançado de esgoto
Subsoma	1,16	96,6	

Resultados (1/2):

Faltam dados e necessitamos mais dados de do ciclo do fósforo na zona semiárido por reservatórios e o bacia (uso do solo)

A significância das fontes de P são: sub bacia com caatinga (erosão) >> aquicultura planeada > mineralização da vegetação > afluxo do São Francisco >> comunidades rurais > agricultura irrigada

Resultados (2/2)

Carga atual do fósforo = 1,56 g m⁻² a⁻¹ P >> carga critica com 1,2 g m⁻² a⁻¹ P

- → crescimento numeroso de macrofitas (*Egeria densa*),
- → ocorrência de cianobacteria como especais não desejadas.

As taxas de exportação P da sub-bacia com caatinga precisam ser reduzidas (controle de erosão com vegetação, das faixas de vegetação ao longo dos ribeirões, uso de chuva (infiltração com barragem subterrâneos)

A aquicultura constitui uma fonte interna de P significativa com a possibilidade de regulação.

O projeto do INNOVATE vai analisar os fluxos do nutriente, quantificar os efeitos no ecossistemas e vai desenvolver um manejo adequado e adaptado por na zona semiárida, ... re-oligotrofização, re-uso da água, re-uso dos sedimentos, fígado verde, uso do bio-carvão, florestação no caatinga

