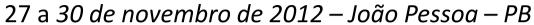


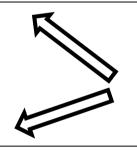
DIAGNÓSTICO DA QUALIDADE DA ÁGUA E MONITORAMENTO DA DESCARGA LÍQUIDA DO RIO PIANCÓ


Edilândia Farias Dantas¹; José Wagner A. Garrido²; Manoel Moises F. de Queiroz³

¹Graduanda em Engenharia Ambiental. Universidade Federal de Campina Grande. Rua Jairo Vieira Feitosa, Bairro dos Pereiros, Pombal, PB. Fone: 8396536996. E-mail: edilandiadantas@hotmail.com

²Graduando em Engenharia Ambiental. Universidade Federal de Campina Grande. Rua Jairo Vieira Feitosa, Bairro dos Pereiros, Pombal, PB. Fone: 8399293891. E-mail: garrido_wagner@hotmail.com

³Docente adjunto da Universidade Federal de Campina Grande. Rua Jairo Vieira Feitosa, Bairro dos Pereiros, Pombal, PB. Fone: 8398214625. E-mail: moises@ccta.ufcg.edu.br

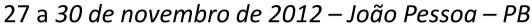


INTRODUÇÃO

Recurso fundamental para a existência da vida

Está se tornando cada vez mais rara em várias partes do mundo

Água



Importante para o desenvolvimento econômico

É vital para a manutenção dos ciclos biológicos

Mantêm em equilíbrio os ecossistemas

INTRODUÇÃO

Monitoramento da qualidade da água

- Pilares do gerenciamento;
- Estado da água;
- Decisões efetivadas no controle e na proteção dos recursos hídricos.

Monitoramento quantitativo da água

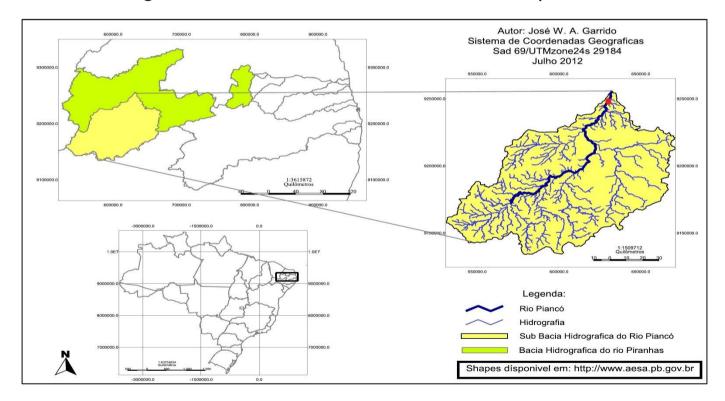
 Determinação da descarga líquida de um curso d'água.

OBJETIVOS

□ Geral

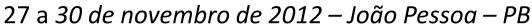
 Realizar o diagnóstico da qualidade da água e monitoramento da descarga líquida do Rio Piancó.

□ Específicos


- Monitorar a vazão liquida;
- Realizar análises de parâmetros físicos e químicos da água;
- Verificar o enquadramento do rio em relação aos parâmetros estudados;
- Verificar a qualidade da água em relação ao risco de salinidade do solo com uso da irrigação.

METODOLOGIA

Este estudo foi realizado na bacia hidrográfica do rio Piancó, entre o sistema Coremas - Mãe D`água e sua foz no rio Piranhas, município de Pombal - PB.


METODOLOGIA

☐ Medição de descarga líquida

Figura 2 - Molinete fluviométrico do fabricante HIDROMEC - modelo NEWTON

METODOLOGIA

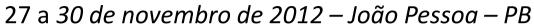
☐ Medição de descarga líquida

Na medição convencional a área da seção transversal é subdivida através de verticais.

Tabela 1 - Distâncias recomendadas entre as verticais

Largura do canal (m)	Distância entre as verticais (m)
< 3,0	0,30
3,0 à 6,0	0,50
6,0 à 15,0	1,00
15,0 à 30,0	2,00
30,0 à 50,0	3,00
50,0 à 80,0	4,00
80,0 à 150,0	6,00
150 à 250,0	8,00
> 250,0	12,00

Fonte: DNAEE (1977) citada por Santos et al., 2001



V= 0,122+0,274*(n)

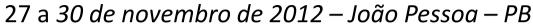
$$Q = A \cdot V$$

$$Q = \sum\nolimits_1^n \! q i$$

METODOLOGIA

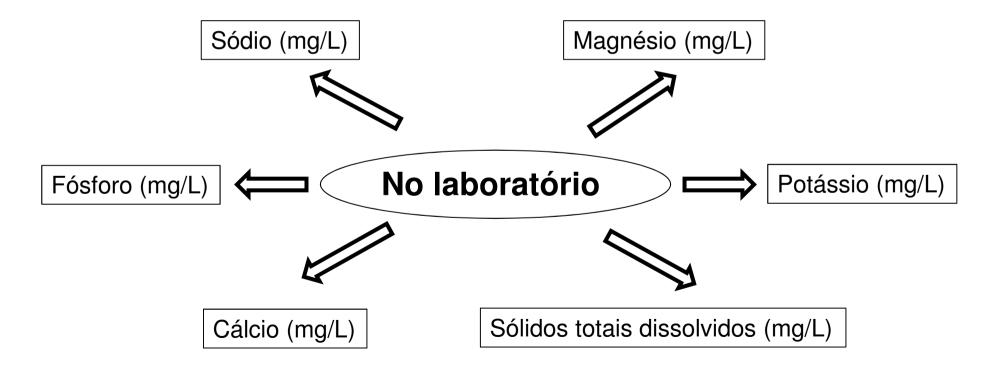
☐ Medição dos parâmetros físico químicos

рΗ


Temperatura da água (°C)

Oxigênio dissolvido – OD (mg/L)

Condutividade elétrica – CE (µs/cm)



METODOLOGIA

☐ Medição dos parâmetros físico químicos

METODOLOGIA

☐ Medição dos parâmetros físico químicos *in locu*

Figura 3 - pHmetro de modelo MPA210p, fabricante MS TECNOPON

METODOLOGIA

☐ Medição dos parâmetros físico químicos in locu

Figura 4 - Condutivimetro de modelo HI8733, fabricante HANNA

METODOLOGIA

☐ Medição dos parâmetros físico químicos *in locu*

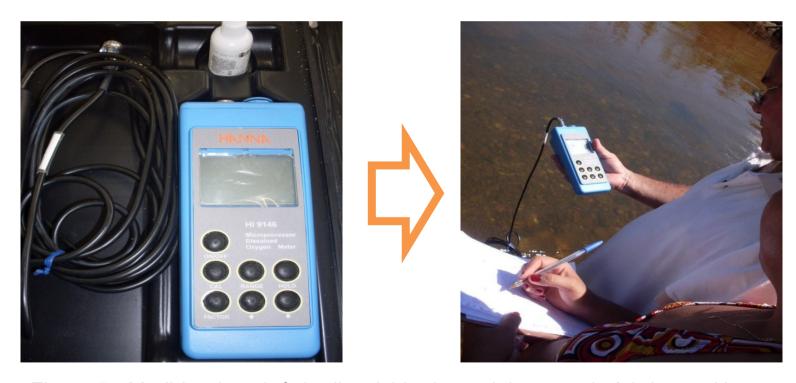


Figura 5 - Medidor de oxigênio dissolvido de modelo 9146 de fabricante Hanna

METODOLOGIA

☐ Coleta de amostra para determinação dos parâmetros físico químicos em laboratório

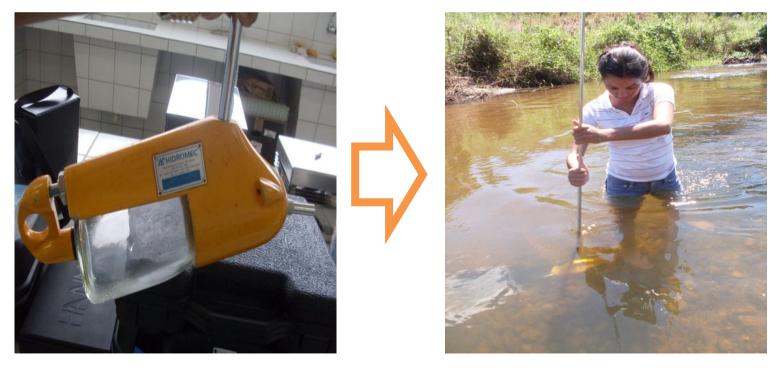
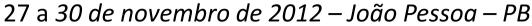
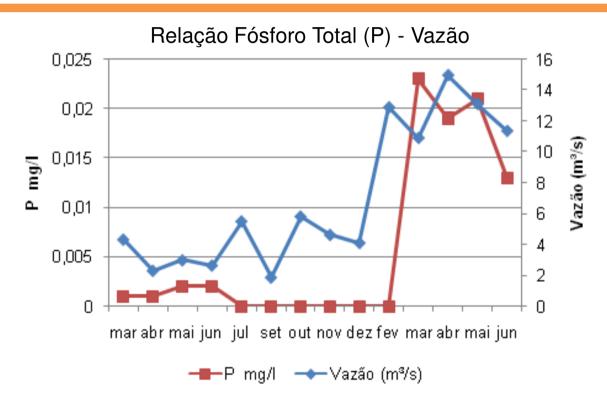
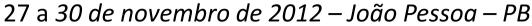


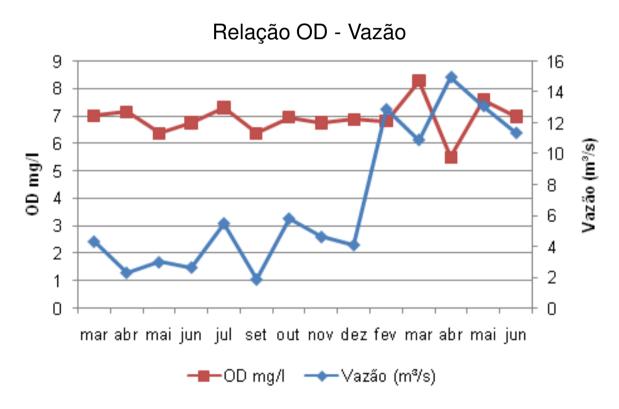
Figura 6 - Coleta de amostras de água a VAU com o amostrador DH-49



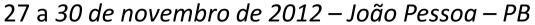

Tabela 2 - Medição de vazão líquida, medição dos parâmetros físicos - químico in locu e da determinação dos parâmetros físico químicos em laboratório

Período	Vazão m³/s	РН	CE μs/cm	OD mg/L	Tágua ºc	P mg/L	Na mg/L	K mg/L	Mg mg/L	Ca mg/L	STD mg/L
Março	4,310	7,600	291,000	7,010	32,200	0,001	0,890	0,130	62,000	29,000	107,800
Abril	2,290	7,790	292,000	7,150	33,400	0,001	0,800	0,140	60,000	28,000	107,200
Maio	2,970	7,590	292,000	6,370	33,500	0,002	1,400	0,160	70,000	30,000	106,900
Junho	2,630	7,690	292,000	6,760	33,450	0,002	1,100	0,150	65,000	29,000	107,050
Julho	5,490	7,810	290,000	7,300	27,800	0,000	0,730	0,086	50,000	30,000	108,200
Setembro	1,852	7,800	288,000	6,370	27,700	0,000	1,030	0,110	40,000	30,000	107,600
Outubro	5,802	8,340	284,000	6,950	32,400	0,000	0,930	0,080	25,000	50,000	244,600
Novembro	4,614	7,980	286,000	6,760	29,800	0,000	0,980	0,090	30,000	40,000	151,600
Dezembro	4,090	7,890	292,000	6,870	28,700	0,000	1,010	0,087	40,000	35,000	167,300
Fevereiro	12,886	7,830	296,000	6,820	33,700	0,000	1,180	0,093	47,500	40,000	100,100
Março	10,902	7,540	263,000	8,280	31,000	0,023	0,740	0,060	40,000	35,000	128,300
Abril	14,971	7,700	257,000	5,500	31,800	0,019	0,700	0,050	40,000	35,000	122,100
Maio	13,104	7,820	286,00	7,580	30,700	0,021	0,880	0,053	35,000	40,000	111,400
Junho	11,356	7,53	276,00	6,980	28,600	0,013	0,840	0,09	46,000	38,000	118,600
Media	5,052	7,795	289	6,91	31,4	0,001	0,91	0,09	43	35	109,8

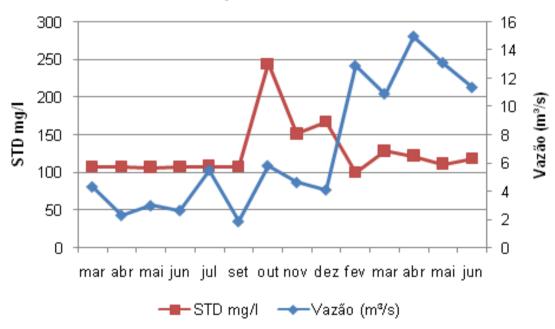




- Valores mínimo e máximo de 0,001 e 0,0023 mg L⁻¹ P, respectivamente.
- São valores aceitáveis pela Resolução CONAMA n° 357/05 para rios de classe 2, que estabelece o limite máximo de 0,05 mg L⁻¹.

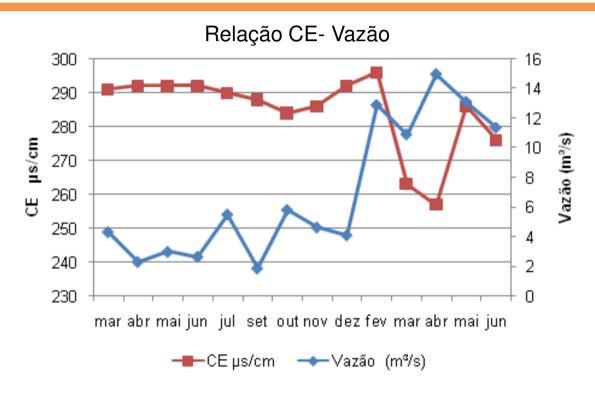


- Variaram entre 5,5 e 8,28 mg L⁻¹ O₂
- Valores aceitáveis de acordo com o limite estabelecido pelo CONAMA 357/05, que estipula um valor mínimo de 5 mg L⁻¹ O₂ para rios de classe 2.



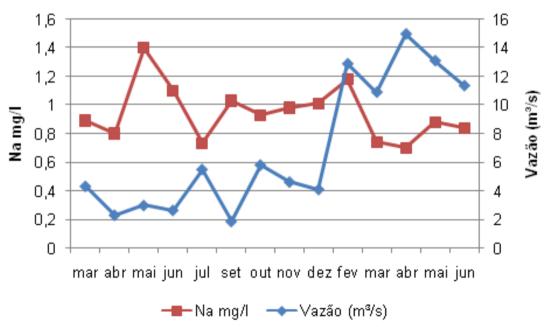
RESULTADOS E DISCUSSÕES

Relação STD- Vazão



- Valores variando de 106,9 e 244,6 mg/L;
- Resolução CONAMA n° 357/05 não estabelece limites relativos à este parâmetro;
- O que indica a variação do aporte de sedimentos ao rio, ocorrendo devido as medições realizadas nos periodos de ausença e presença de chuva na bacia, respectivamente.

27 a 30 de novembro de 2012 — João Pessoa — PB


- Valores variaram entre 257 e 296 μs.cm⁻¹.
- Resolução CONAMA n° 357/05 não estabelece limites relativos à este parâmetro;
- Para a irrigação, apresenta como médio risco de salinização do solo Salinity Laboratory Staff (Bernardo, 1986).

27 a 30 de novembro de 2012 – João Pessoa – PB

- Valores variando entre 0,73 e 1,4 mg/L Na;
- Segundo a classificação de Richards (1954) citado por Holanda et al. (2010) a água do rio Piancó se classifica como sendo C2-S1;
- Significando baixo risco de sodificação e médio risco de salinização do solo, quando a água é utilizado para irrigação.

CONCLUSÃO

Os parâmetros físico-químicos da água do rio Piancó apresentaram satisfatórios resultados.

de acordo com os padrões estabelecidos pela Resolução CONAMA 357/2005, para corpos d'água classe 2.

Embora a vazão seja regularizada houve uma variação da mesma mostrando-se que existe diferentes formas de uso da mesma no trecho Coremas e sua foz.

27 a 30 de novembro de 2012 — João Pessoa — PB

CONCLUSÃO

É importante desenvolver mais estudos

Variações ocorridas na vazão do rio e as alterações da qualidade da água

Promover a gestão desses recursos hídricos de forma adequada

27 a 30 de novembro de 2012 — João Pessoa — PB

AGRADECIMENTOS

BIBLIOGRAFIA

ANA, Agência Nacional de águas (Brasil). (2009). "Medição de descarga líquida em grandes rios: manual técnico". Agência Nacional de Águas. Brasília: ANA.

BERNARDO, S. (1986). "Manual de Irrigação". 4. ed. Viçosa: Imprensa Universitária, UFV, 488p.

BRASIL. (2005). "Resolução CONAMA n. 357, de 17 de março de 2005". Dispõe sobre a classificação dos corpos de água.

FERREIRA, M. I. P. (2008). "Políticas públicas e gerenciamento de recursos hídriocos". Campos dos Goytacazes/RJ. Boletim do Observatório Ambiental Alberto Ribeiro Lamego, v. 2, n. 2.

HOLANDA J. S. et al. (2010). "Qualidade da água na irrigação". Fortaleza, INCT Sal.

MARTINS, W. J.; M. M. DA A.; R. L. M. (2003). "O planeta água". Trabalho apresentado no Centro de Estudos Maçônicos Duque de Caxias. GLMERJ.

SANTOS, Irani et al. (2001). "Hidrometria Aplicada". Curitiba: Instituto de Tecnologia para o desenvolvimento - LACTEC, 372p. Curitiba – Paraná.