

MUDANÇAS CLIMÁTICAS

DEBATEDOR: ARTHUR MATTOS

PALESTRANTES: SUSAN GASKIN - McGILL UNIV. -

CANADA

FRANCISCO DE ASSIS FILHO – UFC - BRASIL

Os seres humanos, assim como outros organismos vivos, sempre exerceram influência sobre o seu ambiente. Mas foi só depois da Revolução Industrial, na metade do século XVIII, que o impacto das atividades humanas começaram a se estender em grande escala continental e até global. As atividades humanas, em particular as que envolvem o uso de combustíveis fósseis para uso doméstico e industrial e a queima de biomassa, produzem gases de efeito estufa e aerossóis que afetam a composição da atmosfera. A emissão de clorofluor-carbonos (CFC) e outros compostos de bromo e cloro não só exercem impacto sobre a forçante radioativa, como contribuem para a diminuição da camada de ozônio na estratosfera. Mudanças no uso da terra, devidas à urbanização e a práticas florestais e agrícolas, afetam as propriedades físicas e biológicas da superfície da Terra. Esses efeitos mudam as forçantes radioativas, produzindo impacto potencial sobre o clima regional e global. (Baede et al. 2001: 87-98.)

- O Painel Intergovernamental sobre Mudança Climática-IPCC estabelecido, em 1988, pela Organização Meteorológica Mundial-OMM e pelo Programa das Nações Unidas para o Meio Ambiente-PNUMA, definiu muitos cenários de forçante climática para o século XXI, com base em múltiplas "linhas de história" para crescimento populacional, desenvolvimento econômico e recursos energéticos.
- A temperatura média global superficial (média da temperatura próxima ao ar sobre a terra e a temperatura da superfície do mar) vem aumentando desde 1861. Durante o século XX, a temperatura aumentou 0,6 ± 0,2 °C.
- A precipitação pluviométrica aumentou de 0,5 a 1%, por década, no século XX, em latitudes altas e médias dos continentes do Hemisfério Norte e de 0,2 a 0,3%, por década, nas áreas tropicais (10 ºN e 10 ºS);

A Atmosfera da Terra

Composição média da atmosfera seca (abaixo de 25 km)

Nitrogênio (N2)

78, 08

Oxigênio (O2)

20, 94

Dióxido de Carbono (CO2) 0, 03 (variável

Hélio (He)

Ozônio (O3)

Hidrogênio (H)

•A atmosfera é uma camada fina de gases, sem cheiro, sem cor e sem gosto, presa à Terra pela f orça da gravidade.

•A atmosfera compreende uma mistura mecânica estável de gases, sendo que os mais importantes

Vapor d'água

0 a 4%

são

Vapor d' Agua

- O conteúdo de vapor pode varia de zero, em regiões áridas, até cerca de 3-4% nos trópicos úmidos;
- O conteúdo de vapor d'água na atmosfera está estreitamente relacionado com a temperatura do ar e com a disponibilidade de água na superfície terrestre;
- Quase ausente entre 10-12 Km acima da superfície terrestre. Devido a eficiência da turbulências que são mais eficazes abaixo de 10Km.

Ozônio (O3)

- Concentrado entre as altitudes de 13 e 35Km da atmosfera;
- O conteúdo é baixo sobre o equador e alto nas direção dos polos, em latitude maiores de 50º;
- Forma-se pela ação da ação dos raios ultravioletas sobre as moléculas de oxigênio
- Apesar da ruptura do oxigênio usualmente ocorra entre 80 e 10 Km, a formação do ozônio somente se dá entre 30 a 60 Km. Este fato se dá devido a baixa densidade atmosférica,
- A ligação do ozônio é instável e pode ser facilmente rompida através da incidência de radiação ou mesmo pelo choque de oxigênio monoatômico (O), formando O2.

como segue:

$$O_3 + O = O_2 + O_2$$

Dióxido de Carbono (CO₂)

- Entra na atmosfera principalmente por meio da ação dos organismos vivos nos oceanos e continentes.
- A fotossíntese ajuda a manter o equilíbrio da quantidade de CO₂, por meio da remoção de cerca de 3-9% de CO₂ total do mundo, anualmente.
- O uso de combustíveis fósseis tem propiciando o aumento da concentração de CO₂ mundial. Por exemplo, a quantidade de total de CO₂ na atmosfera entre 1870 a 1970, foi calculada com tendo um aumento de 294 a 321 ppm, cerca de 11% de aumento, devido a queima de combustíveis fósseis

Importância dos Gases

- O vapor d'água, o ozônio, o CO_2 e os aerossóis desempenham papéis importantes na distribuição e nas trocas de energia dentro da atmosfera e entre a superfície da Terra e a atmosfera.
- Contrariamente do que se esperava, não há separação dos gases
 (como, por ex., o hidrogênio e o hélio) e daqueles mais pesados da atmosfera por causa da constante mistura turbulenta em grande escala da atmosfera.
- A atmosfera e a estrutura da temperatura da atmosfera são grandemente afetadas por suas quantidades e distribuições dentro da atmosfera.

Radiação Solar

- Sol (características)
- Esfera gasosa, luminosa
- Sua superfície possui temperatura aproximada de 6.000ºC
- Emite energia em ondas eletromagnéticas, que se propagam à razão de aproximadamente 299.300 Km/s
- A energia que parte radialmente do sol leva 9 1/3 minutos para chegar ao planeta Terra
- O sol fornece 99,97% da energia que se utiliza em vários no sistema
 Terra-atmosfera
- A cada minuto o Sol irradia cerca de 56 x 10^{26} cal de energia. Onde a Terra somente intercepta 2,55 x 10^{18} cal

Radiação Solar

Padrão de Distribuição

- É ligeiramente alterado sobre a superfície terrestre, basicamente pelo efeito da atmosfera.
- A atmosfera absorve, reflete, difunde e reirradia a energia solar.
- Cerca de 18% da insolação é absorvida pelo ozônio e pelo vapor d'água.
- A absorção da radiação pelo vapor d'água atinge o nível mais alto 0,
 9μm e 2,1μm
- A absorção pelo ozônio absorve a radiação ultravioleta abaixo de nível 0,29μm.
- O CO₂ absorve radiação com comprimento de onda maiores que 4μm

- A cobertura de nuvens impede a penetração da insolação
- A quantidade da reflexão pelas nuvens depende da quantidade e da espessura das mesmas e também do tipo.
- Em média, aproximadamente 25% da radiação que atinge as nuvens é refletida para o espaço a superfície também reflete a radiação
- A superfície terrestre também reflete. Os valores variam de acordo com a superfície. Em geral superfícies secas e de cores claras refletem mais.
- A maioria dos tipos de solo e de vegetação tem albedo muito baixo no UV e aumentando no visível e no infravermelho.

Outros Fatores que interferem na distribuição da insolação

- A distribuição das superfícies terrestres e aquáticas:
- Propriedades químicas e físicas da terra e da água.
- Água se aquece e esfria mais lentamente que a solo.
- As diferenças nas propriedades térmicas das superfícies terrestres e aquáticas se chama Efeito de Continentalidade.
- O albedo da superfície terrestre (8 a 40%) é geralmente maior que da superfície aquática.
- A superfície aquática é transparente, permitindo a penetração mais a fundo dos raios solares.

- A transferência de calor na água se da por convecção, que é mais eficiente e mais rápido de transferência de calor do que o lento processo de condução.
- A água absorve 5x mais energia calorífica para elevar a temperatura, que a mesma massa de solo seco.
- Como a água esta facilmente disponível na superfície aquática a evaporação é contínua, ao passo que sobre a terra a evaporação somente ocorre em presença de água.

Radiação Terrestre

Características

- A superfície terrestre quando aquecida pela absorção da radiação solar, torna-se uma fonte de radiação de ondas longas.
- A maior parte da radiação emitida pela Terra está na faixa espectral infravermelha (4 μ m até 100 μ m) com no máximo 10 μ m.
- A radiação terrestre é chamada de radiação noturna, uma vez que ela é a principal fonte radioativa de energia à noite.
- A radiação infravermelha, não necessariamente são terrestres, pois constituintes atmosféricos também irradiam energia nos comprimento de onda infravermelha.
- A irradiação infravermelha terrestre é dominante a noite devido a interrupção da irradiação solar no local onde é noite.
- Os valores mais elevados de radiação terrestre infravermelha ocorre em baixas latitudes.

Radiação Atmosférica

Características

- Embora a atmosfera seja transparente à radiação em ondas curtas, ela apresenta alta capacidade de absorção de radiação infravermelha.
- Os principais absorventes da radiação infravermelha dentre os constituintes da atmosfera são o vapor d'água (5,3 μm a 7,7 μm e além de 20 μm), o ozônio (9,4 μm a 9,8 μm), o CO_2 (13,1 μm a 16,9 μm) e as nuvens, que absorvem radiação em todos os comprimentos de onda.
- Enquanto a atmosfera absorve somente 24% da radiação solar que atinge a Terra, que é de ondas curtas, somente 9% da radiação IV é liberada diretamente para o espaço, principalmente pela chamada janela atmosférica constituída de comprimentos de 8,5μm – 11,0 μm.

- Os 91% da radiação são absorvidos pela Atmosfera.
- Esta capacidade da atmosfera em absorve a radiação IV é chamado efeito estufa, ou seja, absorve radiação mas impede ou reduz a irradiação da superfície terrestre.
- A atmosfera reirradia a radiação terrestre e solar absorvida em parte para o espaço e em parte para a superfície, chamada de contra-radiação, sem a qual a temperatura da Terra seria 30 a 40ºC mais fria que é agora.

- Este processo da Terra sem atmosfera pode ser constatado agora com o que ocorreu na Antártica no mês de setembro de 2014, quando esta área do planeta parece ser imune ao fenômeno do aquecimento global.
- Os modelos climáticos publicados previam uma drástica diminuição do mar congelado e o aumento da temperatura na região, entretanto o que ocorreu foi surpreendente, a Antártica registrou a maior extensão de sua história, mais de 20 milhões de quilômetros quadrados de gelo, ou 6.6% acima da média para o continente.
- Em termos de temperatura o polo registrou no ano de 2013 o valor mais baixo já registrado pelo homem na Terra 94,7 ºC negativos.
- A explicação, mais aceita, para esta anomalia é por incrível que pareça o buraco de ozônio, que permitiu que a Antártica refletisse para o espaço o calor irradiado.

- Em termos de aquecimento global, desde o inicio dos registros históricos em 1880, a temperatura da Terra subiu 0,85 graus um aumento numa taxa de 0,05 graus por ano.
- Ao contrário da Antártica, que resfriou, no Ártico o mar congelado diminuiu bastante pondo em risco algumas espécies, como por exemplo o Urso Polar.
- Alguns pesquisadores dizem que devido a estes fenômenos, as condições climáticas improváveis se espalham, assim as mudanças climáticas criam um descompasso no planeta.

- Chegando a afirmar que proliferam cenários extremos, que ocorrem ou vão ocorrer secas mais persistentes e tempestades mais intensas.
- No Brasil constatou-se, que o índice de chuvas em São Paulo, neste ano, ficou 42% mais baixo que o esperado, na maior seca da história, entretanto no Sul, no Nordeste (litoral) e no Norte foram registrados recordes de chuvas.
- Em Minas Gerais a escassez de chuvas acabou com a água da nascente do rio São Francisco, fato que ocorreu pela primeira vez na história.

O fenômeno e as explicações das

Mudanças Climáticas

é o tema a ser abordado pelos nossos

Palestrantes

