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ABSTRACT: Flood risk management and flood frequency analysis have relied on the stationary and 
independence assumptions of random events, whereas the probability associated with a given flood is 
constant across time. However, climate variability and land use changes may impose significant 
modifications in the physical processes associated with extreme rainfall-runoff events in a given region 
which in turn may alter the flood hazard for short or long periods. In this case, identification of the key 
climate variables associated with the flood hazard variability is particularly important if one wants to 
assess the impacts of climate change on the flood risk.   Here we explore the hypothesis of a time varying 
flood hazard for several streamflow gauges in leading locations across Brazil by analyzing historical 
streamflow series and large scale climate teleconnections associated with their interannual variability. 
Particularly, we define the flood hazard as the probability of the daily flow to exceed some pre-defined 
threshold value, e.g., the 90th daily streamflow percentile. For each year and gauge, the number of days 
in which the daily streamflow exceeds the threshold value is then stored.  In order to consider only time 
independent flood events, we decluster the daily streamflow series by taking only flood events in which 
the inter-arrival time is greater than three days. The interannual variability in the number of flood events 
for each site is then associated with climate variability in a Poisson regression framework, whose 
covariates are representative of ENSO, of the meridional position of the Intertropical Convergence Zone 
(ITCZ) and of the monsoon system over South America. The spatial distribution of the regression 
estimates are then used to depict a quantitative view of the most sensitive regions in Brazil in terms of 
flood risk changes due to ENSO, ITCZ and monsoon variability. Finally, the implications of potential future 
changes of such large scale climate systems on the flood risk in the country are discussed.  
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1. INTRODUCTION  

Floods are indeed one of the most interesting phenomenons in hydrology. The understanding of its 
spatio-temporal patterns are of practical importance for the society as a whole and their scientific studies 
along the years have also contributed to the advance of other fields in science such as theoretical 
statistics (e.g. the introduction of the extreme value theory by Gumbel in 1958) and climate (e.g. the study 
of floods in a  hydroclimate perspective introduce by Hirshboeck in the 1980's). Traditionally, the empirical 
study of local and regional flood occurrence also known as flood frequency analysis has been the main 
tool to understand some of the spatial and temporal patterns of such extreme events and to provide, 
among other things, crucial information (e.g. flood quantiles) for flood risk management. Usually, when 
local data of flood events in available, a probability model is fit to block maximum or peak over threshold 
(POT) streamflow series and flood quantiles can be obtained for any desired frequency or return period 
(see for instance Stedinger et al., 1993). For ungauged basins, when local data is few or not available 
(prediction in ungauged basins - PUB, see Gupta et al., 2007), then flood flow and its attributes from 
gauged basins are used to estimate flood parameters in the ungauged basins. This process, also known 
as regional flood frequency analysis, has been subject of several studies (see, for instance Stedinger et 
al.,1993, and the references therein) and still poses some relevant challenges (Gupta et al., 2007). In 
both local and regional flood frequency analysis is common to assume that the flood generation 
mechanism is random and stationary in time, which in turn will imply stationary distribution parameters 
and a constant flood hazard along the years.  
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Since the stationary assumption may not hold in basins subject to significant urban development or under 
global climate changes, several attempts have been made to identify non-stationarities in flood flow series 
(e.g. Clarke, 2002; Cunderlik and Burn, 2003; Jain and Lall, 2001; Jain and Lall, 2000; Kwon et al., 2008; 
Milly et al., 2008). Some of those studies have associated time trends in  flood frequency and magnitude 
with large scale climate forcings (Olsen et al., 1999; Jain and Lall, 2000; Andrews et al., 2004) while 
others have attributed those trends to human-induced changes in the basin attributes (e.g. Milly et al., 
2008). Non-stationary models for local flood frequency analysis have as basis the assumption that the 
underlying distribution parameters, particularly the position and scale parameters, are linear or non-linear 
functions of a time-indexed covariate, which might be the time itself or some other time related index (e.g. 
Clarke, 2002; Cunderlik and Burn, 2003). A common approach in regional flood frequency analysis under 
non-stationary conditions has been the extension of the non-stationary local flood frequency analysis to 
ungauged basins (e.g. Cunderlik and Burn, 2003). Note that in this non-stationary framework the concept 
of return period is vague, losing its formal definition (Lima and Lall, 2009), and the associated flood risk 
changes over time - it can be greater or smaller than the risk assumed under stationary conditions (Lima 
and Lall, 2009). Some recent studies (e.g. Salas and Obeysekera, 2014; Obeysekera and Salas, 2013) 
have focused on the development of a new framework for a non-stationary flood risk and have proposed 
methodologies to incorporate it into the design of flood control measures.   

Statistical analysis and models for flood events are often criticised by their lack of physical basis. Flood 
hydroclimatology, as defined by Hishboeck (1988) as "the study of the climate context of floods, i.e., an 
understanding of the long term variation in the frequency, magnitude, duration, location and seasonality of 
floods as determined by an interaction of evolving regional and global ocean and atmospheric circulation 
patterns", brings however a good opportunity to understand the causal chain of extreme floods and 
include this understanding in any flood frequency analysis. A significant number of papers (see, for 
instance, Hirschboeck et al., 2000; Kahana et al., 2002; Prudhomme and Genevier, 2010 and the 
references therein) has taken the framework of flood hydroclimatology to identify flood mechanisms and 
associated climate patterns. 

Here we develop a statistical model to estimate the non-stationary, summer season (December to March) 
flood hazard across Brazil as a function of large scale climate indices that are known to influence the 
rainfall and streamflow patterns across the country. A Poisson regression model is proposed to estimate 
the flood risk, defined as the probability of occurring at least one streamflow event in the summer season 
above a given threshold value, for 44 streamflow gauges in the country. After this introduction, this article 
is organized as follows. In the next section we present the hydroclimate data and the region under study. 
In section 3 we present the theoretical basis for the Poisson regression model. Finally, the results 
obtained are presented and discussed in section 4.  

2. HYDROCLIMATE DATA AND REGION OF STUDY 

Naturalized series of mean daily flow for 44 streamflow gauges located in Brazil (Fig. 1) are provided by 
the National Operator of the System (ONS), which is responsible for the operational policy of most 
hydropower reservoirs in Brazil. Beyond the generation of electrical energy, most of these reservoirs are 
also used for flood control, water supply and agriculture. Roughly 60% of the gauges have flood data 
available that goes back to 1931. The streamflow data available for most gauges covers the period from 
January/1931 to December/2009. Drainage areas range from 2,588 to 823,555 km2. Series of flood 
events for the austral summer months (December through March), which is the main flood season across 
all sites (Lima and Lall, 2011), are obtained for each site by counting the number of days in the season in 
which the daily flow exceeds some pre-specified threshold, which is defined here as a flood quantile of 
low exceedance probability (e.g. the 90th flood quantile – see more details in section 3). As in partial serial 
analysis (e.g. Lang et al., 1999), only independent flow events are considered. In our case, we decluster 
the daily streamflow series by taking only flood events when the inter-arrival time is greater than three 
days.   

In order to account for the influence of large scale climate on the flood risk associated with the streamflow 
data displayed in Fig. 1, we define several climate indexes to be used as covariates in the Poisson 
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regression model. The climate indexes are defined based on interpolated data of sea surface temperature 
(SST) anomalies from the Tropical Pacific and Atlantic oceans (Kaplan et al., 1998; Reynolds et al., 1994) 
and based on seal level pressure (SLP) and 850hPa geopotential heights from the NOAA NCEP-NCAR 
Reanalysis data set over the South America and South Atlantic regions. Both data are provided by the 
International Research Institute for Climate and Society (IRI) and are available at 
http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/ and at 
http://iridl.ldeo.columbia.edu/expert/SOURCES/.NOAA/.NCEP-NCAR/.CDAS-
1/.MONTHLY/.Intrinsic/. The Climate data sets cover the period from January 1949 to 
December/2009. 

 

Figure 1: Location across Brazil of the streamflow gauges used in this work. The red circles show the 
location of the Itaipu (bottom left) and Três Marias (middle right) streamflow gauges used to evaluated the 

proposed model. 

2.1 Climate Predictors 

Climate predictors for the number of flood events for each site and summer season are obtained by 
defining climate indexes from the climate data described above. In order to take into account the effects 
of the El Niño Southern-Oscillation (ENSO) on the frequency of flood events across Brazil (e.g. Grimm et 
al., 1998; Lima and Lall, 2011), we use the NINO3 index as a measure of variability of the SST over the 
tropical Pacific. The NINO3 index is defined as the monthly mean sea surface temperature (SST) 
anomalies (with annual cycle removed) averaged over the area 5°N-5°S latitude, 150°W-90°W longitude. 
The influence of the meridional position of the Intertropical Convergence Zone (ITCZ) on the number of 
floods events is taking into consideration through a predictor derived from the tropical Atlantic SST 
meridional gradient, also known as Atlantic dipole and defined as the difference between the spatially 
average SST anomalies over the tropical North Atlantic (5.5°N- 23.5°N and 15°W-57.5°W) and tropical 
South Atlantic (20°S-0° and 30°W-10°E), as identified in many studies (e.g. Moura and Hastenrath, 2004) 
to be associated with changes in rainfall patterns over Brazil. Changes in the streamflow interannual 
variability associated with anomalies in the SST in the subtropical Atlantic Ocean are considered by 
taking as climate predictors the first two principal models of variability obtained from Principal Component 
Analysis (PCA – see, for instance, Wilks, 2005) of the SST anomalies over the region delimited by 70°W-
20°E and 0°S-60°S. The first two principal components explain around 50% of the data variability. 

 The effect of atmospheric circulation patterns on the flood events across Brazil is considered by defining 
climate predictors associated with the monsoon circulation over South America. Two predictors are 

http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/�
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obtained from the first two principal components (PCs) of the gridded sea level pressure anomalies over 
the area delimited by 80°W-20°E and 0°S-60°S. Two other climate predictors are obtained from the first 
two PCs of the 850 hPa geopotential height over the same area. These two PCs explain roughly 48% of 
the data variability and, given their importance in the proposed model (see next section), we show in 
Figure 2 the loadings (eigenvectors) associated with them. The first loading (Top panel on Fig. 2), which 
explains 28% of the data variability, shows a unique pattern of variation centered on 20°W-50°S. The 
second mode responds to 20% of the data variance and is associated with a kind of see-saw structure, 
with the two poles centered along the 55°S latitudinal band.               

 

 

 

Figure 2: First (top) and Second (bottom) loadings associated with the principal components (PCs) of the 
850 hPa geopotential height field.  
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3. THE POISSON REGRESSION MODEL 

The use of large scale climate information in flood frequency analysis is evaluated in this work through a 
Poisson regression model for the seasonal (DJFM) number of flood events for each site. Here we choose 
to model the number of events exceeding the 90% percentile threshold of the seasonal maximum series, 
which is equivalent to count the number of events in which the daily flow exceeds the 10-year return 
period flood quantile. This particular choice of threshold is intended to illustrate the model and can be 
changed according to the application.  

Mathematically, if Yij denotes the random variable number of floods events that occur in summer season i 
for site j, then the Poisson homogeneous distribution can be defined as: 
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where λj is the expected number of occurrences for a given interval for site j and y is the number of 
occurrences (0, 1, 2, 3, …).  

In a changing climate, we can also assume that the λj parameter is no more stationary in time but a 
function of some large scale climate predictor x indexed by a time variable i, which may represent some 
climate state on a month before or during the respective summer season. By doing so, we explicitly 
account for the climate influence on the frequency of flood events. A Poisson regression model can then 
be applied: 
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log(λij) = aj + bjx(i).        [4] 

Here we assume that there is no overdispersion, i.e., the expected value and the variance of Yij are equal. 
In order to verify this assumption, we apply a regression based test for overdispersion (Cameron and 
Trivedi, 1990) and, for a significance level α = 5%, the null hypothesis of equidispersion (E(Yij) = Var(Yij)) 
is not rejected for any site. We also assume that, given the climate predictor x(i), the random variables Yij 
are independent in both time and space. 

It is reasonable to assume that a skilful climate predictor x has to carry some information of important 
climate variables responsible for most of the rainfall and streamflow variability across Brazil. The 
expansion of [2] to include all climate predictors presented in section 2.1 would be a logical choice given 
the knowledge of climate teleconnections in Brazil, however, an excessive number of predictors 
(correlated or not) in [2] would lead to a poor fitting and consequently deteriorate the ability of the model 
to predict the flood hazard. That being said, we limit the number of predictors in [2] through a preliminary 
analysis of cross-correlation between the average number of flood events across all sites and the value of 
the climate predictors at the eleven months (January-November) that anticipate the summer season 
(December through March) and at December of the concurrent summer season. The results (not shown 
here) pointed out to three important predictors to consider: December NINO3 index, December Atlantic 
dipole and October second leading mode of the PC associated with the 850 hPa geopotential height field, 
whose spatial patterns are shown in Fig. 2.      

The final model for the frequency of extreme flood events on the summer season over all sites analyzed 
here can be written as: 
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where the covariates are explained in table 1.   
 

Table 1: Covariates used in model [5] 
Covariate Description Time index i 

x1 NINO 3 index December of concurrent summer season  
x2 Tropical Atlantic Dipole December of concurrent summer season 
x3 PC2 of Geopotential Height at 850 hPa Previous October 

4. RESULTS 

4.1 Spatial Distribution of Poisson Coefficients 

Maximum likelihood estimates (MLE) for all three parameters (b, c and d) in Eq. [5] are shown in Figure 3. 
The spatial distribution of the b coefficient associated with the NINO3 index shows (left hand panel of Fig. 
3) a spatial homogeneity across all sites, although not all estimates are statistically significant (solid 
circles) at the 10% significance level. The spatial pattern of the c coefficient (middle panel of Fig. 3) 
shows a high heterogeneity and no statistically significant estimate, which suggests a weak influence of 
the dipole index on the frequency of extreme events across the country. The influence of the atmosphere 
circulation on flood events can be seen in the spatial distribution of the d parameter (right panel of Fig. 3), 
which displays a high degree of homogeneity and an elevated number of statistically significant 
parameters, particularly in the Paraná basin.  

 

Figure 3: Spatial Distribution of Poisson Parameter Estimates. Filled circles are statistically significant.  

4.2 Example of Flood Hazard Estimation as a Function of Climate 

In order to better quantify the flood hazard as a function of large scale climate, we estimate, for each site, 
the probability of occurrence of at least one event using the Poisson regression model (Eqs. [3] and [5]). 
Since the c parameter is not statistically significant for all sites, we fit the Poisson model having only the 
covariates x1 and x3 , and then calculate P(Yij > 0 ) for a range of values of x1 and three fixed values of x3 
related to 10th, 50th and 90th percentiles of its historical values. Note that, for a stationary Poisson process, 
the probability P(Yij > 0 ) depends on the value of the threshold chosen in order to count the number of 
flood events. 
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As illustrative of the model utility, we show in Figures 4 and 5, respectively, the probability P(Yij > 0 ) for 
the Itaipu and Três Marias streamflow gauges (see location in Fig. 1), which are flood prone regions and 
rely on reservoir operation policies as a flood control measure for the downstream areas. For values of 
NINO3 close to zero (neutral conditions in tropical Pacific), the flood hazard tends to be close to what is 
expected based on the historical data and on the stationary assumption, with a moderate increase in the 
risk for state 3 of x3, which is associated to extreme values (90th percentile) of this covariate, more 
precisely to an enhancement of the dipole structure of the 805 hPa geopotential height along 55°S 
(bottom panel of Fig. 2). As the December conditions in the eastern Tropical Pacific switches to El Niño, 
the associated flood risk increases and fluctuates around 25% for a mild El Niño (x1 = 1.5) and crosses 
75% for the most extreme El Niño event that occurs in December 1997 (x1 = 3.68). In general, the 
uncertainty band associated with the flood hazard increases (in %)  as x1 gets lower, being also larger for 
state 3 of x3.  

The flood risk for the Três Marias gauge (Fig. 5) shows a weak association with ENSO, with a gentle 
increase in the risk for higher values of x1. However, independent of x1, the flood risk more than double 
from state 1 to state 3 of x3, with an associated increase in the uncertainty band. In fact, all eight flood 
events identified for the Três Marias gauge occurred for x3 > 0 (Fig. 6), while five events took place when 
x1 > 0.     

 

Figure 4: Flood hazard for the Itaipu streamflow gauge as a fuction of the NINO3 index (predictor x1). The 
three states correspond to the 10th, 50th and 90th percentiles of the historical values of the x3 covariate. 

The horizontal black line shows the stationary flood hazard based on the historical, average frequency of 
flood events. The shaded regions depict the 95% confidence interval for the respective probabilities     
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Figure 5: As in Fig 4, but for the Três Marias streamflow gauge 

 

Figure 6: scatter plot of x1 (left) and x3 (right) versus the number of flood events for the Três Marias 
streamflow gauge. 

4.3 Non-Stationary Flood Hazard and Future Changes 

As a non-stationary process, the flood hazard for most streamflow gauges analyzed here changes every 
summer season as a function of the covariates x1 and x3, which represent large scale climate associated 
with the SST in the eastern tropical Pacific (i.e. ENSO) and a seesaw pattern of variability of the 850 hPa 
geopotential height (Fig. 2) in the southern Atlantic. For instance, Figure 7 depicts the temporal changes 
in the flood hazard estimated by the model as the probability of occurrence of at least one flood event 
with magnitude greater than the 90th percentile of the summer season maximum flow on the Itaipu 
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streamflow gauge. It is interesting to note that the flood risk can be much higher than what is expected 
from a homogeneous Poisson process (i.e. a static flood risk, horizontal black line in Fig. 7). The question 
that pops up is how this curve will change as the climate system, particularly x1 and x3, evolve into the 
future? A simple Mann-Kendall test (e.g. Wilks, 2005) on the x1 and x3 series shows no evidence of any 
monotonic trend in both cases, so no immediate threat related to increasing or decreasing trends in the 
predictors is found.  

Future projections of ENSO from General Circulation Model (GCMs) simulations in general do not show 
(e.g. Philip and van Oldenborgh, 2006) any preference across models for a particular state (El Niño, 
Neutral or La Ninã), so in this case it is not straightforward to access future changes in the flood hazard 
across Brazil due to changes in the magnitude and frequency of ENSO. On the other hand, future 
changes in the statistics of x3 may change the flood hazard. Here we perform a simple sensitivity analysis 
in order to evaluate how potential changes in the mean and variance of x3 affect the flood risk for the Três 
Marias streamflow gauge. For simplicity, we keep the x1 statistics as observed in the historical record. The 
simulation procedure is done as follows:  

• 1000 samples of length 60 years are obtained for x3 considering a normal distribution and 
changes in the historical statistics of mean and variance of x3. Simulation of x1 is obtained through 
bootstrapping (with replacement) the historical series of x1; 

• The flood hazard (probability of at least one flood event during the summer season) for each 
season is calculated considering the model (Eq. [5], without x2) fit with the historical data (Fig. 5); 

• For each sample of 60 years, one counts the number of seasons in which the flood risk is greater 
than 50%. The average number of seasons is obtained by averaging the 1000 simulations; 

• The entire process is repeated for each different value of mean and variance of x3.         

The results obtained are depicted in Figure 8. Changes in the mean value of x3 lead to only small changes 
in the flood risk. On average, just one summer season in the 60-year block has a flood risk greater than 
50%, which is still less than what is obtained in the historical record ( = 2, see Fig. 7). On the other hand, 
a linear increase in the number of seasons is observed as the variance changes from 50% to 300% of its 
historical value.                   

 

Figure 7: Probability of occurrence of at least one flood event with magnitude greater than the 90th 
percentile of the seasonal (summer) maximum flow on the Itaipu streamflow gauge. The shaded region in 

grey is the 95% confidence interval. The black horizontal lines shows the static flood risk based on the 
frequency of events and a homogeneous Poisson model. The red line shows flood hazard = 50%.  
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Figure 8: Average number of summer seasons (over 1000 samples) in a 60-year period in which the flood 
hazard is greater than 50% as a function of % changes in the historical mean (blue curve) and variance 
(black curve) of x3. The horizontal red line shows the number of seasons in the historical record (Fig. 7).  

5. CONCLUSIONS 

In this work we proposed a model to estimate the non-stationary, summer season flood hazard across 
Brazil as a function of large scale climate indices that are known to influence the rainfall and streamflow 
patterns across the country. For a given season, the flood hazard for 44 streamflow gauges in the country 
was defined as the probability of occurring at least one flood event, which in turn was defined for this work 
as a streamflow magnitude above the 90th flood quantile of the seasonal maximum series of each gauge 
(i.e., the empirical 10-year return period flood quantile). A Poisson regression model was proposed to 
estimate the flood risk having as covariates the concurrent December NINO3 and tropical Atlantic dipole 
indexes and the previous October second PC associated with the 850 hPa geopotential height field over 
the South America and South Atlantic regions.  

Based on the spatial distribution of the Poisson regression estimates, high values of the NINO3 index 
were associated with an increase in the frequency of flood events for most of the sites, although for only 
16% of them the regression coefficient was statistically significant at the 10% significance level. The 
coefficients associated with the tropical Atlantic dipole index were not statistically significant, suggesting 
that the influence of this climate variable may be limited to changes in the average rainfall, with no 
influence in extreme events. The predictor associated with the 850 hPa geopotential height field shows a 
strong influence on several sites, particularly those located in the southeast region. The estimates were 
statistically significant for roughly 50% of the sites. Other potential predictors associated with SST 
anomalies over the South Atlantic and with SLP anomalies over South American and South Atlantic were 
also evaluated but did not show any statistically significant association with the interannual variability of 
the number of flood events for the streamflow gauges analyzed here.  

As an illustrative example of the model use, we estimate the flood hazard for two flood prone regions:  the 
Itaipu and Três Marias streamflow sites, located, respectively, in the Paraná and São Francisco basins. 
The climate risk related to the flood events of these sites was estimated considering the range of the 
previous December NINO3 index and three states of the 850 hPa geopotential height derived index: the 
10th (state 1), 50th (state 2) and 90th (state 3) empirical percentiles. For the Itaipu gauge, a tremendous 
increase in the flood risk, compared with its stationary counterpart, is observed when the NINO3 index is 
above zero (warm ENSO events), with risk values even higher than 50%, particularly for states 2 and 3 of 
the 850 hPa geopotential height index. The flood risk for the Três Marias streamflow gauge is less 
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sensitive to changes in NINO3, as expected given the diffuse effect of ENSO on the rainfall patterns 
across the San Francisco basin, but tends to more than double when the 850 hPa geopotential height 
index switches from state 1 to state 3. Particularly, all summer seasons in which there was at least one 
flood event in the Três Marias gauge were marked by positive values of x3 in the previous October. 

The use of a Poisson regression model with time-varying covariates led to a non-stationary flood hazard, 
which for some summer seasons can be more than double the static risk, as illustrated for the Três 
Marias streamflow gauge. Changes in the future risk were evaluated by a sensitive analysis considering 
simulations of x1 through bootstrapping the historical series and of x3 assuming incremental changes in the 
mean and variance of its historical statistic. The results show that the frequency of seasons that 
experience a high flood risk (>50%) tends to be very sensible to changes in the variance of x3, which 
reinforces the need to improve the monitoring and prediction of this variable, particularly its variability. 
The inclusion of other predictors in the model and an increase in the number of sites to be evaluated will 
be theme of future research. Assessing changes in the flood risk associated with projected changes in x3 
will be also researched.                         
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