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ABSTRACT: This paper presents a new methodology for flood forecasting integrating volunteered 
geographic information – VGI and wireless sensor networks – WSN. The methodology was applied to 
São Carlos city urban basin, São Paulo state, Brazil and showed promising results compared to the 
forecasted ones using only sensor data. The major contribution of this methodology is the high capacity of 
adaptation to different kinds of data, increasing the amount of data and reducing the forecasting 
uncertainty. Also, the proposed methodology can simulate scenarios of predicted precipitation using 
weather radar and two other methods - Precipitation forecasting using weather data and forecasting using 
statistics techniques. This work is still under development and the main objective of this paper is to 
present the current status of the research and the proposed methodology. The preliminary results showed 
that the basin model still needs improvements before conducting calibration. 
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1. INTRODUCTION 

According to the United Nations (UN) Brazil is among the countries with the highest incidence of floods. 
The total economic direct and indirect costs related to flood incidents reach 3% of the GDP and the 
damages are equivalent to 11% of tax revenues. Brazil has shown annually hundreds of deaths by 
drowning, flooding and accidents in flood valleys (Mendiondo et al., 2013). 

The increase in floods and torrents over the last decades has motivated researchers to develop more 
accurate forecasting models. Although useful, it is noted that the existing models of hydrometeorological 
prediction have limitations. However, these models have features that can be complemented. The rainfall-
runoff models, for example, are commonly used for creating flooding scenarios only with probabilistic 
rainfall (Alvisi et al., 2013; Hughes, 2013). On the other hand, recently studies of precipitation forecasting 
models based on radar data have presented good results (Austin and Bellon, 1974; Löwe et al., 2014). 
The integration of these two distinct phases of the hydrological cycle (rainfall-runoff model and radar 
based precipitation forecast) can be a real contribution to the current systems. 

Another technology that can be added is the wireless sensor networks (WSN). Using sensors among 
technologies of transmission of real-time information has higher robustness compared to the traditional 
data acquisition techniques (Hughes et al., 2011). This system, however, has the disadvantage of high 
costs and difficulty in ensuring protection of the field equipment. Recently, a new concept has emerged - 
the VGI (Volunteered Geographic Information) - which consists in getting data through information 
provided by volunteer citizens. Unlike the WSN, the VGI has low cost and easy maintenance (Goodchild, 
2007; Poser and Dransch, 2010; Degrossi et al., 2014; Fava et al., 2013).  
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Regarding the information which serves as input data for model prediction, these two methods can be 
used together, complementing and increasing promisingly the amount of information and quality of model 
prediction. 

The aim of this study is to propose the integration of diverse systems that directly or indirectly assist in 
flood forecasting using hybrid data sources. Therefore, this system is applied to the urban watershed of 
São Carlos - SP. 

The proposed flood forecasting hybrid system: Hydrological Alert Model with Participatory Basis (HAMPB) 
was implemented through various modules; each responsible for executing a task. The details of 
integration and data exchange between different applications through the use of management systems 
database was discussed. This work is still in progress, therefore the main contribution is the proposal of a 
new methodology and the partial results obtained. 

2. DESCRIPTION OF THE HAMPB SYSTEM 

The general scheme of HAMPB model is shown in Figure 1. The main program (“Brain”) centralizes and 
manages all modules. In the following sections details of each module are explained. Field data are 
obtained from different data sources and standardized and formatted for HAMPB. 

 

 
Figure 1: Fluxogram of HAMP Model. 

 
 

2.1 Data Acquisition 

To obtain VGI data, a system developed by Degrossi et al. (2014) was used. The data are reported 
sporadically by volunteers via mobile app, website or both. The user can inform the current river level by 
observing on the water level rulers or reporting intervals of flood hazard index at channel walls proposed 
by Rotava et al. (2013) (Figure 2a).  
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The WSN data are obtained through nodes of WSN network consisting of water level sensors installed at 
three points of the basin (Figure 2-b). These data are transmitted through mobile network to a database 
at the Institute of Mathematics and Computer Sciences (ICMC), USP.  

  

(a) (b) 
 

Figure 2: (a) Water level and hazard index and (b) Water Level Sensor. 

 

Data from meteorological stations are composed of weather variables as: pressure, relative humidity and 
temperature. Public data provided by the National Institute of Meteorology (INMET) was used, however, 
the HAMPB can obtain data from other weather stations e.g. Brazilian National Institute of Space 
Research (INPE), Natural Disasters Monitoring Center (CEMADEN) or other sources. 

HAMPB model has a module capable of receiving data, requiring only data processing to fit the variables 
used for the prediction system. The HAMPB model can forecast precipitation by three different methods 
that are described on the next section. 

For practical reasons, the HAMPB model does not perform queries on ICMC and National Institute of 
Meteorology databases all the time. The data is replicated to a local database called NIBH database 
located at research laboratory “NIBH/SHS/EESC-USP” at USP São Carlos – SP, Brazil. This module is 
also responsible for collecting any VGI information received via website or mobile application integrating 
them into NIBH database. Data acquisition module is also responsible for importing the data obtained by 
the software from meteorological stations. All necessary information to run the HAMPB model is 
centralized in a single local database, eliminating problems such as lack of communication or latency with 
other servers. 

2.2 Precipitation Forecasting 

The second module is called "rainfall forecasting". “Brain” constantly executes this module along with the 
data acquisition. With the data in the required format, the user can run and get the rainfall graph derived 
from precipitation forecast model.  

The HAMPB model has three models for rainfall forecasting: (i) a prediction model that uses radar data 
and data from meteorological station, proposed by Gonçalves (2009); (ii) if there is no radar information 
available a second model predicts only weather data; (iii) and the third model uses a univariate (1D) linear 
regression of previous rainfalls. The three models are more detailed below. 
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2.2.1 Precipitation forecasting using radar data  

Gonçalves (2009) proposed a model for forecasting rainfall using information generated by weather radar 
systems, coupled with a hydrometeorological prediction model, followed by a rainfall-runoff model. The 
precipitation forecast model was an adaptation of the model initially proposed by Georgakakos and Bras 
(1984) and applied by Andrade (2006). 

The precipitation forecast considers 1D (one dimensional) vertical approach of a cloud as a reservoir of 
condensed water, whose temporal variation of the liquid water mass is expressed by a balance equation 
of moisture as: 

     

  
                                                                                                        [1] 

where            is the temporal variation of water storage in the cloud [kg.m
-
².s

-1
];      is the humidity 

due to the condensation of the vapor contained in the ascending air entering the cloud [kg.m
-
².s

-1
];       is 

the output of vapor through the cloud top [kg.m
-
².s

-1
] e       is output of the moisture through the bottom of 

cloud [kg.m
-
².s

-1
]. 

The following weather variables are measured on the surface: temperature (  ), pressure (    and dew 
point temperature (   . These variables are used as input data for the model. The portion of the model 

relative to the mass of liquid water     for a given time t is the estimated content of vertically integrated 
liquid water (VIL) calculated by weather radar (Gonçalves, 2009). 

Besides the use of VIL information for the echo top determines the height of the precipitating systems. 
Providing an information of Echo Tops, VIL in the next interval (t +1), and applying the information to 
estimate precipitation proposed Georgakakos and Bras (1984) gives the value of the expected rain for 
each time interval. More details about the rainfall model prediction using radar data can be obtained at 
Gonçalves (2009). 

2.2.2 Precipitation forecasting using weather data 

The precipitation forecast based on pure, without radar information, weather data was initially proposed 
by Georgakakos and Bras (1984) and applied by Andrade (2006). A weather station provides values of 
temperature, pressure and dew point temperature to predict precipitation one step forward. Future 
temperature, pressure and dew point are estimated through correlation of each variable. 

2.2.3 Precipitation forecasting using statistics techniques 

In order to perform the prediction of rainfall for the next hour, the methodology proposed by Georgakakos 
and Bras (1984) is used, which consists on relating data from earlier rainfall through a univariate linear 
regression of lag 1 to the variable to be forecast (Equation 2): 

                               
                                                                                 [2] 

where      is the forecasted precipitation value at t + 1, y is the current precipitation,    is the average of 

 ,    is a random number between 0 and 1,    is the standard deviation of  , and    is the autocorrelation 

coefficient of lag 1 given by Equation 3: 

   
                     
   

          
   

                                                                                                             [3] 

Where n is the number of intervals considered in the autocorrelation. 
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2.3 SWMM Interface 

Having the acquired water level data (VGI and WSN) through the data acquisition module and the 
predicted precipitation obtained from the prediction module, hydrological simulations were assessed with 
the Storm Water Management Model (SWMM) developed by the U.S. Environmental Protection Agency 
(Rossman, 2010). SWMM is a rainfall-runoff model capable of simulating single or extended period of 
events, simulating quantitative and qualitative aspects. The model has been widely used in academia due 
to its high performance, free, open source and large support Internet group of users (Rossman, 2010). 

SWMM Interfacing Module proposed in this methodology (Figure 1) is responsible for all actions involving 
the use of SWMM. It is responsible for editing the input file for SWMM model of a desired basin and 
automatically inserting the rainfall data obtained from the prediction made in the previous step. In 
addition, this module also uses the information obtained from the levels of WSN networks and VGI, 
converting them into flow values and updating the information of the initial and final flow at each link on 
SWMM or even updates level values directly without necessarily turning them into flow values. This 
module is responsible for making the updated file for the simulation. These data can also be modified in a 
simpler way, in cases where only one of the points of the simulated basin need a new value or receive a 
new information, it is possible to only change the values at this point of interest. 

2.4 Web Interface 

The module “Web Interface” is responsible for using simulated data and comparing with the actual data 
for the error calculations and display the graphics display. These results can be published on a website 
for real-time early warning.  

2.5 Brain 

“Brain” is responsible for running each module in the correct order. “Brain” module receives data from 
various hybrid sources and match these information so that with each new round of information the model 
is updated, providing online forecasts. 

Figure 3 shows three possible different monitoring configurations for using HAMPB. Situation 1 indicates 
VGI, WSN and the observation point (simulation) in three distinct places. The situation 2 shows a 
scenario where the three points are located in the same place. And the third situation shows a place of 
observation and monitoring point (WSN) complemented with a VGI point in other place.  

 
Figure 3: Distinct monitoring configurations for the basins. 
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3. MODEL CALIBRATION 

The calibrator used was a multi-site calibrator developed by Shinma and Reis (2014). The optimization 
technique used in the calibration of the models of nested basins have shown robustness compared to the 
use of sequential calibration of each sub-basins (Shinma and Reis, 2014) 

The calibrator system calibrates 8 parameters, defined into valid physical intervals, the parameters and its 
intervals are listed in Table 1. 

Table 1: Lower and upper limits of the calibration parameters (Shinma and Reis, 2014). 

Parameter Acronym 
Lower 
limit 

Upper 
limit 

Width factor mW 0,8 1,2 
Slope multiplier mS 0,8 1,2 
Manning roughness coefficients for impermeable areas NI 0,01 0,03 
Manning roughness coefficients for permeable areas NP 0,1 0,25 

Horton’s Maximum infiltration rate (mm/h) 
Horton’s Minimum infiltration rate (mm/h) 
Horton’s Decay Constant (h

-1
) 

I0 8,0 44,14 

Ib 2,5 22,0 

K 2,0 7,0 
Manning's roughness coefficient multiplier Mn 0,8 1,2 

3.1 Application 

The calibration was conducted for the Monjolinho urban watershed, São Carlos - SP; a river basin with a 
large number of tributaries that contributes to a single drainage unit. The basin was modeled in SWMM 
through 156 nodes and 57 sub-basins with drainage areas ranging between 0.07 to 5.1 km². The total 
drainage area of Monjolinho watershed is 76 km

2
. The basin has a population density of 194.53 

inhabitants/km² according to the municipal planning secretary (PMSC, 2005). It has an average altitude of 
856 meters in relation to sea level and the soil is considered highly permeable. Land use and land cover, 
topography and channel characteristics (Figure 4) were considered for modeling. Currently there are 15 
water level meter installed in different parts of the basin and in three of these points there are also a 
range of hazard index. The calibration system uses genetic algorithms to perform the optimization and 
needs a set of parameters. The parameters used for the genetic algorithm were an initial population of 
100; with 100 iterations: 100; mutation probability of 0.07; and crossover probability of 0.7.  

 
Figure 4: Monitoring points of São Carlos Basin. 
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In this paper, we present the performance of VGI, WSN systems for rainfall-runoff events occurred at the 
São Carlos basin on the following days: 27/12/2004, 25/01/2005, 31/12/2005 and 27/01/2006. The time 
step used was registered every 5 minutes (   = 5 min).  

We calibrated the model using node N-1 as showed in Figure 4. The nodes N-2 and N-3 are used to 
simulate flow after the model is updated using the HAMPB methodology (Figure 4). 

Figure 5 shows preliminary results obtained for a precipitation event. The simulation obtained from the 
calibrated model (red line) was close to the real values (blue line) for most of the time series. However, 
the simulation was notsatisfactory for the flood peaks, which are the most important for flood forecasting. 
The calibration can be improved by modifying the objective function of the optimization method, in order 
to the minimize the errors on the peaks. 

 
Figure 5: Calibration results in a monitoring point. 

 

After the hydrological model calibration we performed rain forecast using weather data (temperature, 
pressure and dew point temperature) presented in Figure 6. The blue bars are the predicted rainfall while 
the green bars represent field measurement. After obtain the predicted precipitation, SWMM model was 
duplicated; the first copy was updated with the field data and the second copy was updated with the 
predicted rain, simulations were performed using the two new models – the green line shows the 
simulation using observed precipitation and the blue line shows the simulation using the predicted 
precipitation. 

Through the graph it is possible to see that there is a delay of 90 minutes between the maximum peak of 
precipitation and flow. The simulated flow at this point remains above the real values for a few hours 
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(between 12.30 and 16.30), while the observed flow rate immediately decreases with the decrease of 
peak rainfall showing that the time of concentration and the duration of the rain require adjustments on 
the modeling that were not yet solved by the calibration. 

The flow forecasting of the second point (N-3) is shown in Figure 7. The predicted flow was overestimated 
by the model, and the same rainfall prediction was used for the entire basin. The prediction results were 
similar to those found in the first section. Although the flows have presented higher values to the first 
point (maximum  flow of 45 m

3
/ s on the first point and 13m

3 
/ s in the second point), the pattern found in 

the two figures is quite similar. And, likewise, we can verify the need for adjustments on the model. 

 
Figure 6: Flow forecasting for node N-2.  

 
 

 
Figura 7: Flow forecasting for node N-3. 
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After the previous step, we perform three simulations to compare the efficiency of the new methodology 
using the predicted precipitation. The blue line represents the observed water level in the point N-2. The 
others three lines are the simulated levels incorporating WSN data (red line), WSN + VGI data (orange 
line) and without changes in the model (green line). The three simulations are very similar until 0 am, then 
the green line underestimate the water level for subsequent times while the other two methods presents 
estimated values above the observed data. The forecasting using WSN and VGI was updated with VGI 
data only in three instants (12pm, 4h30pm and 8pm) using volunteer information from upstream of the 
point N-2. The forecasting in this instants were slightly better than using only WSN information, however, 
far from the water level peak. As the VGI data was informed upstream from the N-2, the wave simulation 
was damped by the mathematical model, thus, correlating all available spatial data can improve the 
results in all subcatchments.  
 

 
Figure 8: Water level forecasting comparison. 

 

4. CONCLUSIONS 

This paper presented a new proposal for hydrometeorological forecasting named HAMPB. This 
methodology integrates the voluntary prediction models with short-term information, presenting a solution 
to fill the data spatially in places where there are no monitoring sensors. 

The use of data from VGI has as main advantages the improvement and real-time update of the forecasts 
monitored by WSN sensors and the estimation of levels for points not monitored. The volunteer 
information’s should be treated carefully because they involve great uncertainty. The use of the two 
technologies has advantages such as for providing a larger amount of information available on the basin 
for simulations and calibration. Furthermore, the use of VGI technology allow model runs with more 
accurate data, producing more realistic answers to a point on the basin. 

The implementation of new visualization techniques is essential in this study due to the large amount of 
data obtained on the precipitation forecast module, by monitoring the sensors level, voluntary level 
information and also the correlations made between the data for each produced forecast horizon. 
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This research shows the need for more studies in the area and experimental determination of amounts to 
be integrated into the probabilistic relationships proposed in order to verify the accuracy of the prediction 
using the proposed model. 

The study is under development, improvements on the HAMPB model will be performed, therefore the 
main contribution of this paper is the proposal of a new methodology and the partial results obtained so 
far. 

The predicted flow is highly dependent on rainfall data. Therefore, improvements on rainfall prediction 
using radar datasets can significantly improve flow forecasts. Furthermore, analyzing the calibration it was 
found that the model still requires adjustments in order for the simulations correctly represent the 
behavior of the basin, reducing the error between the time of concentration and duration of rain. However, 
it is possible to verify that the proposed model presents theoretical consistency and is a promising 
method for basins with sparse data. 
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