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ABSTRACT: Nowadays  there seems to be a consensus among the scientific community that, due to 
climate change, there is an intensification of the hydrological cycle, which, coupled with evidence of the 
impact of persistent modes of regional climate variability, have led hydrologists to study hydrological 
extremes under nonstationarity. In this paper, the peaks-over-threshold (POT) model with Poisson arrivals 
and generalized Pareto (GP) distributed exceedances is used to assess the influence of El-Niño Southern 
Oscillation (ENSO) in the flood regime of the Itajaí-Açu river, in Southern Brazil. The application of the 
POT approach has the advantage of being able to detect and model the influence of climate on the 
occurrence rate of floods and their peak magnitudes separately. 
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1. INTRODUCTION  

Historically, flood frequency analysis has been applied under the assumption of stationarity. Recently, 
however, there is an increasing scientific consensus on climate change and the intensification of the 
hydrological cycle, assumably leading to changes in flood regimes. Milly et al. (2008) argue that such 
changes undermine stationarity in water resources engineering. Clarke (2007) questions the widespread 
assumption of stationarity in hydrological practice and  contends that the next few decades should see an 
increase in the understanding in the drivers of change in flood regimes, not only for forecasting their 
development, but also for predicting the frequency of occurrence of extremes. 

There is a number of recent studies that link changes in the regime of hydrological extremes to changes 
in teleconnection climate indices such as the North Atlantic Oscillation (NAO) and the El Niño – Southern 
Oscillation (ENSO) (Silva et al., 2012, 2013; Grimm and Tedeschi, 2009). Such signs of changes 
prompted the development of advances in the statistical methods applied to frequency analysis of 
extremes in order to account for the dynamic behavior of the data. Recently, nonstationary modeling of 
hydrological extremes, such as floods, has become an emerging topic of high scientific interest (Katz, 
2010, 2013; Salas and Obeysekera, 2013, Silva et al., 2012, 2013). 

In flood frequency analysis, the peaks-over-threshold (POT) framework is an alternative to the more 
popular annual maximum series approach in that it consists of sampling all the independent peak values 
above a given threshold and their annual arrival counts. A POT model enables the joint characterization 
of both the over-threshold peaks and their occurrence rate, thus resulting in a single distribution of annual 
maximum floods (Silva et al., 2013). 

The generalized Pareto (GP) distribution is commonly adopted to model the exceedance magnitudes. 
Justification for its use arises from extreme value theory (Coles, 2001). Shane and Lynn (1964) proposed 
that the arrivals of over-threshold peaks conform to a Poisson process, hence they propose the Poisson 
distribution to model the annual number of peaks.  
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The combination of the Poisson and GP distributions in a POT framework results in a generalized 
extreme value (GEV) distribution for annual maxima (Davison and Smith, 1990).  

Coles (2001) popularized parametric nonstationary GEV and GP models which allow the estimation of 
parameters as linear functions of covariates, through link functions.  

This paper presents a study on the nonstationarity of floods in the Itajaí-açu river in Southern Brazil using 
a POT framework. The Poisson-GP model is used and nonstationarity is introduced separately in the 
Poisson and GP parameters, in order to model climate-flood links. 

2. STUDY REGION AND DATA 

The Itajaí river basin is located in the Santa Catarina State, in the South of Brazil and drains into the 
Atlantic Ocean. The total catchment area of the basin is approximately 15000 km

2
. As shown in Fig. 1, 

there are two main tributaries that merge just 7 km from the ocean: the Itajaí-açu and the Itajaí-mirim 
rivers. According to Nery et al. (2000), rainfall in the Itajaí basin has a seasonal behavior comprehending 
two seasons: a wet season (October to March) and a relatively drier season (April – September). 

The lower reaches of the Itajaí-açu river are prone to severe flooding (Martins and Clarke, 1993). In July 
1983, an extreme flood caused extensive damage (US$1.1 bn) to the city of Blumenau and several 
fatalities (Tachini, 2010). The history of devastating floods in the Itajaí river basin motivated the 
construction of contention dams on the higher reaches of the river during the 1970s-90s (Abers, 2007). 
The first dam, identified in Fig. 1 as R1, in the Itajaí do Oeste tributary, was completed in 1973; the 
second, R2, in the Itajaí do Sul, was completed in 1975; the third, R3, in the Itajaí do Norte, was 
completed in 1992. 

 

Figure 1: Itajaí river basin. Location of the utilized gauging station and existing flood control reservoirs. 

The Itajaí basin is located within the Southeastern South America (SESA) region, where the influence of 
ENSO in climate variability has been reported (Grimm and Tedeschi, 2009). Grimm (2011) detected the 
influence of ENSO on the frequency and magnitude of heavy rainfall events in SESA. The 1983 historic 
flood in Blumenau is associated with an El Niño occurrence (Martins and Clarke, 1993).  

The research carried out in this paper consists of an analysis on the influence of ENSO on the flood 
regime in the Itajaí-açu river. For that purpose, mean daily flow data from 1934/35 to 1990/91 at Apiúna 
(Fig. 1) were utilized. The catchment area at Apiúna is approximately 9242 km

2
. The hydrologic year 
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beginning on October 1
st
 was adopted so as to coincide with the beginning of the wet season. The data 

were collected by the Brazilian National Water Agency, ANA, and made available via the HIDROWEB 
database (http://hidroweb.ana.gov.br/). 

The utilized ENSO data consists of the monthly Niño3.4 climate index calculated from the HadISST1 
dataset by Rayner et al. (2003), which refers to the sea surface temperature (SST) from 5S-5N and 170-
120W, from 1870 on. The data were centered by subtracting the mean of the respective months. The 
annual ENSO index used in the analysis was defined as the December-to-February mean value (DJF) of 
the centered Niño3.4 SST. 

A preliminary analysis was made on the potential influence the three reservoirs of the Itajaí-açu tributaries 
may have on the flood regime of Apiúna, in which a representative flood volume is compared to the 
capacity of the flood control reservoirs. Table 1 shows the capacities and catchment areas of the 3 
reservoirs shown in Fig. 1 (Tachini, 2010). The representative flood volume was obtained by averaging 
the dimensionless hydrographs of 184 independent floods and multiplying the resulting mean 
dimensionless hydrograph by the mean of the annual maximum series. The volume of the hypothetical 

flood was determined at 6104.881   m
3
. Upon comparing this value with the reservoir capacities on Table 

1, it seems that reservoirs R1 and R2 do not significantly alter the flood regime at Apiúna. Reservoir R3 
is, by far, the largest of the three, hence we admit that the combined effect of all three reservoirs on the 
flood regime at Apiúna (60% of the mean flood volume; 50% of the catchment area) may be significant. 
For that reason, only the data prior to the beginning of operation of R3 were utilized. 

Table 1: Main characteristics of flood control reservoirs in the Itajaí-açu basin. 

Reservoir River Operation 
started 

Capacity (m
3
) Catchment area 

(km
2
) 

R1 Itajaí do Oeste 1973 6100.83   1042 

R2 Itajaí do Sul 1976 6105.97   1273 

R3 Itajaí do Norte 1992 6100.357   2318 

3. METHODS 

3.1 Nonstationary Poisson-GP model 

The Poisson-GP model is a common setup for flood frequency analysis under a POT approach. That 
model consists of a combined use of the Poisson distribution for modeling the annual number of flood 
occurrences, Y, and of the GP distribution for modeling the threshold exceedance magnitudes, XOT. The 
probability mass function (PMF) of the Poisson distribution is given by 
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where the Poisson parameter, , is estimated by the sample mean. 

Cunnane (1979) and NERC (1975, pp. 197-198) propose a test for the verification of the Poisson 
assumption for Y, based on the dispersion index (ratio between sample variance and mean). If the data 
adjusts to the Poisson distribution, the dispersion index should take values close to 1.  

The GP has the cumulative distribution function (CDF) 
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where  ,   and   are, respectively, the shape, scale and location parameters, being that the latter is 

fixed and equal to the selected threshold. 

The selection of the threshold remains the most subjective aspect of POT modeling and there is no 
universally accepted rule for it. In this paper, the threshold is selected using the mean residual life (MRL) 
plot technique, described by Davison and Smith (1990) and Coles (2001). In order to ensure the 
independence of the POT data, it was imposed that the selected peaks must be separated in time by a 
minimum of 10 days, and that the streamflow between two peaks should decrease below as much as two 
thirds of the first one, after a suggestion by NERC (1975) and Cunnane (1979). 

Under the Poisson assumption, the CDF of annual maximum floods, )x(F , is given by  

    xG1exp)x(F          [3] 

By combining [1] and [2], one obtains the CDF of the GEV model for annual maxima with a Poisson-GP 
parameterization 
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A pragmatic approach for POT modeling under nonstationarity is to allow the parameters of [4] to change 
over time as a function of a covariate, following that at any given point in time the annual maxima are 
described by an extreme value distribution, even if such distribution changes over time. 

A varying Poisson parameter, , can be estimated parametrically using a generalized linear model (GLM, 
Davison, 2003) where the response variate, y, has a Poisson mass and the mean of y is related to one or 
more linear predictors through link functions. 

Davison and Smith (1990) and Coles (2001) propose an approach for covariate modeling of the GP 
parameters in a POT context using regression. Similar to the GLM, the nonstationary GP model uses link 
functions of a covariate as linear predictors of the response, x. Usually, nonstationarity is only applied to 
the scale parameter of the GP,  , and the shape parameter   is assumed stationary, since the 

estimation of   is difficult even under stationarity since data in the upper tail is very scarce. 

Model selection under nonstationarity is an important issue. The basic aim here is to obtain a 
parsimonious model with the capacity of explaining much of the data variation. In this paper, the relative 
performances of candidate models, both stationary and nonstationary, were evaluated using: (i) 
asymptotic likelihood ratio tests (LRT, Coles, 2001), whenever possible; and (ii) the Akaike (1974) 
information criterion, AIC. 

3.2 Uncertainty estimation 

The methods described in 3.1 are subject to statistical uncertainty due to finite data samples of hydrologic 
random variables. In this paper, the delta method (Davison, 2003) was applied to estimate the uncertainty 
of estimated parameters and functions of those parameters, such as flood quantiles. According to the 

delta method, if θ̂  is a k-parameter vector estimate of  k1 ,,  θ , and Σ  is the limiting variance-

covariance matrix of the parameter estimators θ̂ , the asymptotic variance, gV , of a scalar function 

 θg can be approximated by 

ΣhhT
gV            [5] 



 

5 

where h is the gradient of  θ̂g  and can be obtained either by algebraic or numerical differentiation. 

An estimate of Σ  can be obtained numerically by inverting the Hessian of the respective log-likelihood 
function at the point of maximum likelihood. 

When dealing with the Poisson-GP model, it is convenient to separate the parameters of the Poisson 
from the parameters of the GP and assume that the sample properties of the flood peak magnitudes are 

independent of the flood occurrence process. Under the former assumption, we have  GPPoi θθθ , , with 

  0,θθCov
jGPiPoi  and Σ  becomes 
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where m and n are, respectively, the number of parameters of the Poisson and GP models, n,m0  is an 

m-by-n null matrix, and PoiΣ  and GPΣ  are the asymptotic variance-covariance matrices of the parameter 

estimators of the Poisson and GP, respectively. 

4. RESULTS 

4.1 Threshold selection 

The threshold selected using the MRL plot technique, mentioned in 3.1, was 650u0  m
3
/s. Fig. 2a shows 

the MRL plot, complemented with 95% confidence bands and theoretical GP MRL functions obtained 
using the methods described in Silva et al. (2013). 

 

Figure 2: a Empirical MRL plot with 95% confidence band and theoretical GP MRL; b dispersion index 
plot. 

Fig. 2b shows the dispersion index plot, obtained by computing the dispersion index for increasing values 
of the threshold, u. The plot was complemented with the confidence limits obtained using the methods 
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described in Silva et. al. (2013). That figure shows that the Poisson assumption should not be rejected for 
the selected threshold. 

4.2 Over-threshold occurrence counts models 

The (non)stationarity of the annual over-threshold occurrence counts, Y, were analyzed using the Niño3.4 
(DJF) index as a potential covariate, z. Fig. 3a shows the observed values of Y plotted against the 
corresponding value of the covariate. 

 

Fig. 3: a Annual number of over-threshold peak occurrences, Y, plotted against the Niño3.4 (DJF) index 

of the corresponding year. b Parametric GLM estimates of  z  and 95% confidence envelopes (dotted 

curves). 

The stationary Poisson model, PD1, was used as a baseline model. Based on a visual analysis of Fig 3a, 
two parametric GLM models with Poisson mass were postulated for describing the variation of the 

Poisson parameter as a function of the covariate,  z : PD2 with a log-linear link, which is the canonical 

link function for a Poisson GLM,   zzlog 10  , and PD3 with the quadratic polynomial link 

  2
210 zzz  . 

The parameter estimated and respective standard errors of the fitted models are presented in Table 2.  
Since PD1 is nested in both PD2 and PD3, we can apply an asymptotic LRT where PD1 in the null model 
to test whether or not the stationary model Pd1 should be rejected in favor of either of the nonstationary 
models PD2 or PD3. Table 2 shows the maximized log-likelihoods and p-values of the LRTs, as well as 
the AIC scores for each model. The p-values suggest that the stationary model PD1 should be rejected in 
favor of either PD2 or PD3 at the 5% significance level. The relative performance of models PD2 and PD3 
cannot be evaluated through an LRT, however, according to AIC, PD3 provides the best fit for the data. 

Fig. 3b shows the estimates of  z  for the fitted models as well as their respective 95% confidence 

bands, which were constructed using the delta method. 

 

 



 

7 

Table 2: Parameter estimates and standard (st.) errors for the models fitted to the sample of annual 

number of over-threshold occurrences, Y, for 650u0  m
3
/s; maximized log-likelihood and p-value for the 

LRT comparing a model (alternate) with the PD1 (null); AIC. 

 

4.3 Over-threshold peak magnitudes models 

In this section the relationship between the over-threshold peak magnitudes, OTX , and the Niño3.4 

covariate, z, is analyzed. This analysis focused on the scale parameter of the GP,  , being that the 

shape parameter,  , was considered a constant throughout the analyses. Fig. 4a shows the OTX sample 

plotted against the covariate z. A visual analysis of that figure suggests that the relationship between OTX  

and z is a complex one since it does not seem that the sampled flood peaks’ statistical characteristics 
exhibit any monotonically increasing or decreasing behavior with regards to the covariate. 

 

Figure 4: a Over-threshold peak magnitudes plotted against the Niño3.4 (DJF) index of the corresponding 

hydrological year. b Parametric GP estimates of  z  and 95% confidence envelopes (dotted curves). 

Model Parameter estimate 
(st. error) 

Max. log-
likelihood 

p-value AIC 

PD1 (Stationary  )     

  3.2280 (0.2380) -117.79  237.58 

PD2 (log-linear )z( )     

0  1.1556 (0.0749) -115.50 0.03 235.00 

1  0.1824 (0.0849)    

PD3 (quadratic polynomial )z( )     

0  2.8023 (0.2854) -113.28 0.01 232.55 

1  0.4974 (0.3018)    

2  0.5635 (0.2703)    
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A stationary model, GP1 was considered as a baseline model. Based on a visual analysis of Fig. 4a, two 

parametric nonstationary GP models were postulated for describing  z : GP2 with a log-linear link, 

  zzlog 10  , and GP3 with a cubic polynomial link,    3
3

2
210 zzzz  .  

Table 3 presents the parameter estimates and respective standard errors of the GP models. Since GP1 is 
nested in both GP2 and GP3, asymptotic LRTs were applied where GP1 is the null model. The results of 
Table 3 suggest: (i) the stationary model GP1 should not be rejected in favor of the nonstationary GP2 at 
the 5% significance level; (ii) GP1 should be rejected in favor of GP3 at 1% and 5% significance levels; 
(iii) according to the AIC, GP3 provides the best fit for the data. 

Table 3: Parameter estimates and standard (st.) errors for the distributions fitted to the peak magnitudes 

above the threshold 650u0  m
3
/s; maximized log-likelihood and p-value for the LRT comparing a model 

(alternate) with the GP1 (null); AIC. 

Model Parameter estimate 
(st. error) 

Max. log-
likelihood 

p-value AIC 

GP1 (Stationary GP)     

0u   -1337.2  2676.3 

  493.7516 (53.3881)    

  -0.0627 (0.0792)    

GP2 (log-linear )z( )     

0u   -1336.3 0.33 2678.6 

0  6.1943 (0.1092)    

1  0.0732 (0.0750)    

  -0.0567 (0.0796)    

GP3 (cubic polynomial )z( )     

0u   -1327.9 310  2665.8 

0  583.4352 (76.1296)    

1  -287.1907 (91.0245)    

2  -27.8595 (35.2899)    

3  123.0112 (36.1158)    

  0.0996 (0.0766)    

 

Fig. 4b shows the different estimates of  z  as well as their respective 95% confidence envelopes, 

which were obtained using the delta method. 

4.4 Annual maxima models 

In this section, 2 models for annual maxima were considered, based on eqn. [3]: (i) a stationary model, 
AM1, obtained by combining the stationary Poisson and GP models, PD1 and GP1; (ii) a nonstationary 
model, AM2, obtained by combining the nonstationary Poisson and GP models, PD3 and GP3. Excluding 
the threshold, which is fixed in either case, models AM1 and AM2 have 3 and 8 parameters, respectively.  

In Fig. 5a the AM1 model is compared against the observed AMS sample, which was plotted according to 
the Gringorten (1963) plotting position. Fig. 5b shows the observed annual maximum floods and flood 
quantiles with a non-exceedance probability, F, of 0.75 and 0.99, as a function of the Niño3.4 (DJF) 
index, z. Fig. 5b effectively illustrates the complex dependence structure between the probability of non-
exceedance of annual maximum floods as a function of the utilized climate covariate, comprising a 
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quadratic relationship in  z  and a cubic relationship in  z . In Fig. 5a,b, the 5 largest observed annual 

maxima are dated and marked as filled circles. 

 

Figure 5: a AMS sample, AM1 model and 95% confidence envelopes (dotted curves).  b AMS sample 
plotted against the corresponding Niño3.4 index; estimated quantiles for 2 non-exceedance probabilities 

(continuous lines) and 95% confidence envelopes (dotted lines). In a and b, the 5 largest observed 
annual maxima are dated and marked as filled circles. 

5. CONCLUSIONS 

This paper presents a brief study on the frequency analysis of floods at Apiúna, in the Itajaí-açu river, 
using the POT approach under nonstationarity. In order to study the influence of ENSO on the flood 
regime in that river, the Niño3.4 (DJF) climate index was used as a covariate. Following are the main 
conclusions obtained from the results. 

 A significant influence of ENSO was found in both the Poisson parameter,  , and the GP scale 

parameter,  . 

 Complex dependence structures were found between the covariate and the observed values of 

over-threshold occurrence counts, Y, and peak magnitudes, OTX . As a result, the nonstationary 

model for annual maxima has a total of 8 parameters and comprehends a quadratic polynomial 

relationship on  z , and a cubic polynomial relationship on  z . Notwithstanding its large 

number of parameter, the model is parsimonious according to the LRT p-values and AIC scores. 

 The methods applied in the analysis clearly demonstrate the advantages of nonstationary 
modeling of floods in a POT framework, namely, the ability to detect and model the influence of 
covariates on the occurrence process of floods, and their peak magnitudes separately, and using 
different dependence structures in order to obtain an annual maxima model that better describes 
the flood regime at the site.  

The results of every step of the analysis were complemented with a comprehensive uncertainty analysis, 
through the construction of confidence envelopes for parameters and quantiles using the delta method. 
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